Maize straw increases while its biochar decreases native organic carbon mineralization in a subtropical forest soil

Organic soil amendments have been widely adopted to enhance soil organic carbon (SOC) stocks in agroforestry ecosystems. However, the contrasting impacts of pyrogenic and fresh organic matter on native SOC mineralization and the underlying mechanisms mediating those processes remain poorly understoo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2024-08, Vol.939, p.173606, Article 173606
Hauptverfasser: Zhou, Jiashu, Zhang, Shaobo, Lv, Junyan, Tang, Caixian, Zhang, Haibo, Fang, Yunying, Tavakkoli, Ehsan, Ge, Tida, Luo, Yu, Cai, Yanjiang, Yu, Bing, White, Jason C., Li, Yongfu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Organic soil amendments have been widely adopted to enhance soil organic carbon (SOC) stocks in agroforestry ecosystems. However, the contrasting impacts of pyrogenic and fresh organic matter on native SOC mineralization and the underlying mechanisms mediating those processes remain poorly understood. Here, an 80-day experiment was conducted to compare the effects of maize straw and its derived biochar on native SOC mineralization within a Moso bamboo (Phyllostachys edulis) forest soil. The quantity and quality of SOC, the expression of microbial functional genes concerning soil C cycling, and the activity of associated enzymes were determined. Maize straw enhanced while its biochar decreased the emissions of native SOC-derived CO2. The addition of maize straw (cf. control) enhanced the O-alkyl C proportion, activities of β-glucosidase (BG), cellobiohydrolase (CBH) and dehydrogenase (DH), and abundances of GH48 and cbhI genes, while lowered aromatic C proportion, RubisCO enzyme activity, and cbbL abundance; the application of biochar induced the opposite effects. In all treatments, the cumulative native SOC-derived CO2 efflux increased with enhanced O-alkyl C proportion, activities of BG, CBH, and DH, and abundances of GH48 and cbhI genes, and with decreases in aromatic C, RubisCO enzyme activity and cbbL gene abundance. The enhanced emissions of native SOC-derived CO2 by the maize straw were associated with a higher O-alkyl C proportion, activities of BG and CBH, and abundance of GH48 and cbhI genes, as well as a lower aromatic C proportion and cbbL gene abundance, while biochar induced the opposite effects. We concluded that maize straw induced positive priming, while its biochar induced negative priming within a subtropical forest soil, due to the contrasting microbial responses resulted from changes in SOC speciation and compositions. Our findings highlight that biochar application is an effective approach for enhancing soil C stocks in subtropical forests. [Display omitted] •Maize straw enhanced while its biochar reduced native SOC mineralization.•Straw induced a positive priming effect (PE) but biochar induced an opposite effect.•Straw induced a positive PE via increasing O-alkyl C content.•Biochar induced a negative PE via increasing aromatic C content.•PE induced by straw/biochar was related to changes in C-cycling enzymes and genes.
ISSN:0048-9697
1879-1026
1879-1026
DOI:10.1016/j.scitotenv.2024.173606