Divergent Synthesis of Sulfur‐Containing Bridged Cyclobutanes by Lewis Acid Catalyzed Formal Cycloadditions of Pyridinium 1,4‐Zwitterionic Thiolates and Bicyclobutanes

Bridged cyclobutanes and sulfur heterocycles are currently under intense investigation as building blocks for pharmaceutical drug design. Two formal cycloaddition modes involving bicyclobutanes (BCBs) and pyridinium 1,4‐zwitterionic thiolate derivatives were described to rapidly expand the chemical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2024-10, Vol.63 (40), p.e202408578-n/a
Hauptverfasser: Xiao, Yuanjiu, Wu, Feng, Tang, Lei, Zhang, Xu, Wei, Mengran, Wang, Guoqiang, Feng, Jian‐Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bridged cyclobutanes and sulfur heterocycles are currently under intense investigation as building blocks for pharmaceutical drug design. Two formal cycloaddition modes involving bicyclobutanes (BCBs) and pyridinium 1,4‐zwitterionic thiolate derivatives were described to rapidly expand the chemical space of sulfur‐containing bridged cyclobutanes. By using Ni(ClO4)2 as the catalyst, an uncommon higher‐order (5+3) cycloaddition of BCBs with quinolinium 1,4‐zwitterionic thiolate was achieved with broad substrate scope under mild reaction conditions. Furthermore, the first Lewis acid‐catalyzed asymmetric polar (5+3) cycloaddition of BCB with pyridazinium 1,4‐zwitterionic thiolate was accomplished. In contrast, pyridinium 1,4‐zwitterionic thiolates undergo an Sc(OTf)3‐catalyzed formal (3+3) reaction with BCBs to generate thia‐norpinene products, which represent the initial instance of synthesizing 2‐thiabicyclo[3.1.1]heptanes (thia‐BCHeps) from BCBs. Moreover, we have successfully used this (3+3) protocol to rapidly prepare thia‐BCHeps‐substituted analogues of the bioactive molecule Pitofenone. Density functional theory (DFT) computations imply that kinetic factors govern the (5+3) cycloaddition reaction between BCB and quinolinium 1,4‐zwitterionic thiolate, whereas the (3+3) reaction involving pyridinium 1,4‐zwitterionic thiolates is under thermodynamic control. A divergent synthesis of two types of sulfur‐containing bridged cyclobutanes, 2‐thia‐5‐azabicyclo[5.1.1]nonenes and thia‐norpinenes from identical bicyclobutanes (BCBs), respectively, through high‐order(5+3) and hetero‐(3+3) reactions, has been developed.
ISSN:1433-7851
1521-3773
1521-3773
DOI:10.1002/anie.202408578