Pt-O-Ce interaction enhanced by Al substitution to promote the acetone degradation through accelerating the breaking of CC bond in acetic acid intermediate
[Display omitted] The reaction rate of volatile organic compounds (VOCs) oxidation is controlled by the rate-limiting step in the total reaction process. This study proposes a novel strategy, by which the rate-limiting step of acetone oxidation is accelerated by enhanced chemical bond interaction wi...
Gespeichert in:
Veröffentlicht in: | Journal of colloid and interface science 2024-10, Vol.671, p.611-620 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
The reaction rate of volatile organic compounds (VOCs) oxidation is controlled by the rate-limiting step in the total reaction process. This study proposes a novel strategy, by which the rate-limiting step of acetone oxidation is accelerated by enhanced chemical bond interaction with more electrons transfer through Al-substituted CeO2 loaded Pt (Pt/Al-CeO2). Results indicate that the rate-limiting step in the process of acetone oxidation is the decomposition of acetic acid. Al substitution enhances the Pt-O-Ce interaction that transfers more electrons from Pt/Al-CeO2 to acetic acid, promoting the breaking of its CC bond with a lower free energy barrier. Attributing to these, the reaction rate of Pt/Al-CeO2 is 13 times as high as that of Pt/CeO2 and its TOFPt value is 11 times as high as that of Pt/CeO2 at 150 °C. Moreover, the CO2 selectivity of Pt/Al-CeO2 also increases by 22 %. This work establishes the relationship between Pt-O-Ce interaction and acetone oxidation that provides novel perspectives on the development of efficient materials for VOCs oxidation. |
---|---|
ISSN: | 0021-9797 1095-7103 1095-7103 |
DOI: | 10.1016/j.jcis.2024.05.178 |