Seven years of the transcarotid artery revascularization surveillance project, comparison to transfemoral stenting and endarterectomy

This study utilizes the latest data from the Vascular Quality Initiative (VQI), which now encompasses over 50,000 transcarotid artery revascularization (TCAR) procedures, to offer a sizeable dataset for comparing the effectiveness and safety of TCAR, transfemoral carotid artery stenting (tfCAS), and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of vascular surgery 2024-11, Vol.80 (5), p.1455-1463
Hauptverfasser: Straus, Sabrina, Yadavalli, Sai Divya, Allievi, Sara, Sanders, Andrew, Davis, Roger B., Malas, Mahmoud B., Wang, Grace J., Kashyap, Vikram S., Cronenwett, Jack, Motaganahalli, Raghu L., Nolan, Brian, Eldrup-Jorgensen, Jens, Schermerhorn, Marc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study utilizes the latest data from the Vascular Quality Initiative (VQI), which now encompasses over 50,000 transcarotid artery revascularization (TCAR) procedures, to offer a sizeable dataset for comparing the effectiveness and safety of TCAR, transfemoral carotid artery stenting (tfCAS), and carotid endarterectomy (CEA). Given this substantial dataset, we are now able to compare outcomes overall and stratified by symptom status across revascularization techniques. Utilizing VQI data from September 2016 to August 2023, we conducted a risk-adjusted analysis by applying inverse probability of treatment weighting to compare in-hospital outcomes between TCAR vs tfCAS, CEA vs tfCAS, and TCAR vs CEA. Our primary outcome measure was in-hospital stroke/death. Secondary outcomes included myocardial infarction and cranial nerve injury. A total of 50,068 patients underwent TCAR, 25,361 patients underwent tfCAS, and 122,737 patients underwent CEA. TCAR patients were older, more likely to have coronary artery disease, chronic kidney disease, and undergo coronary artery bypass grafting/percutaneous coronary intervention as well as prior contralateral CEA/CAS compared with both CEA and tfCAS. TfCAS had higher odds of stroke/death when compared with TCAR (2.9% vs 1.6%; adjusted odds ratio [aOR], 1.84; 95% confidence interval [CI], 1.65-2.06; P < .001) and CEA (2.9% vs 1.3%; aOR, 2.21; 95% CI, 2.01-2.43; P < .001). CEA had slightly lower odds of stroke/death compared with TCAR (1.3% vs 1.6%; aOR, 0.83; 95% CI, 0.76-0.91; P < .001). TfCAS had lower odds of cranial nerve injury compared with TCAR (0.0% vs 0.3%; aOR, 0.00; 95% CI, 0.00-0.00; P < .001) and CEA (0.0% vs 2.3%; aOR, 0.00; 95% CI, 0.0-0.0; P < .001) as well as lower odds of myocardial infarction compared with CEA (0.4% vs 0.6%; aOR, 0.67; 95% CI, 0.54-0.84; P < .001). CEA compared with TCAR had higher odds of myocardial infarction (0.6% vs 0.5%; aOR, 1.31; 95% CI, 1.13-1.54; P < .001) and cranial nerve injury (2.3% vs 0.3%; aOR, 9.42; 95% CI, 7.78-11.4; P < .001). Although tfCAS may be beneficial for select patients, the lower stroke/death rates associated with CEA and TCAR are preferred. When deciding between CEA and TCAR, it is important to weigh additional procedural factors and outcomes such as myocardial infarction and cranial nerve injury, particularly when stroke/death rates are similar. Additionally, evaluating subgroups that may benefit from one procedure over another is essential for informed deci
ISSN:0741-5214
1097-6809
1097-6809
DOI:10.1016/j.jvs.2024.05.048