Flexible DNA Nanoclaws Offer Multivalent and Powerful Spatial Pattern-Recognition for Tumor Cells

Multivalent receptor–ligand interactions (RLIs) exhibit excellent affinity for binding when targeting cell membrane receptors with low expression. However, existing strategies only allow for limited control of the valency and spacing of ligands for a certain receptor, lacking recognition patterns fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-05, Vol.16 (23), p.29760-29769
Hauptverfasser: Chen, Kang, Mao, Miao, Huo, Lian, Wang, Guanzhao, Pu, Zhe, Zhang, Yuanqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multivalent receptor–ligand interactions (RLIs) exhibit excellent affinity for binding when targeting cell membrane receptors with low expression. However, existing strategies only allow for limited control of the valency and spacing of ligands for a certain receptor, lacking recognition patterns for multiple interested receptors with complex spatial distributions. Here, we developed flexible DNA nanoclaws with multivalent aptamers to achieve powerful cell recognition by controlling the spacing of aptamers to match the spatial patterns of receptors. The DNA nanoclaw with spacing-controllable binding sites was constructed via hybrid chain reaction (HCR), enabling dual targeting of HER2 and EpCAM molecules. The results demonstrate that the binding affinity of multivalent DNA nanoclaws to tumor cells is enhanced. We speculate that the flexible structure may conform better to irregularly shaped membrane surfaces, increasing the probability of intermolecular contact. The capture efficiency of circulating tumor cells successfully verified the high affinity and selectivity of this spatial pattern. This strategy will further promote the potential application of DNA frameworks in future disease diagnosis and treatment.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.4c03382