A bistable inhibitory optoGPCR for multiplexed optogenetic control of neural circuits

Information is transmitted between brain regions through the release of neurotransmitters from long-range projecting axons. Understanding how the activity of such long-range connections contributes to behavior requires efficient methods for reversibly manipulating their function. Chemogenetic and op...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature methods 2024-07, Vol.21 (7), p.1275-1287
Hauptverfasser: Wietek, Jonas, Nozownik, Adrianna, Pulin, Mauro, Saraf-Sinik, Inbar, Matosevich, Noa, Gowrishankar, Raajaram, Gat, Asaf, Malan, Daniela, Brown, Bobbie J., Dine, Julien, Imambocus, Bibi Nusreen, Levy, Rivka, Sauter, Kathrin, Litvin, Anna, Regev, Noa, Subramaniam, Suraj, Abrera, Khalid, Summarli, Dustin, Goren, Eva Madeline, Mizrachi, Gili, Bitton, Eyal, Benjamin, Asaf, Copits, Bryan A., Sasse, Philipp, Rost, Benjamin R., Schmitz, Dietmar, Bruchas, Michael R., Soba, Peter, Oren-Suissa, Meital, Nir, Yuval, Wiegert, J. Simon, Yizhar, Ofer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Information is transmitted between brain regions through the release of neurotransmitters from long-range projecting axons. Understanding how the activity of such long-range connections contributes to behavior requires efficient methods for reversibly manipulating their function. Chemogenetic and optogenetic tools, acting through endogenous G-protein-coupled receptor pathways, can be used to modulate synaptic transmission, but existing tools are limited in sensitivity, spatiotemporal precision or spectral multiplexing capabilities. Here we systematically evaluated multiple bistable opsins for optogenetic applications and found that the Platynereis dumerilii ciliary opsin ( Pd CO) is an efficient, versatile, light-activated bistable G-protein-coupled receptor that can suppress synaptic transmission in mammalian neurons with high temporal precision in vivo. Pd CO has useful biophysical properties that enable spectral multiplexing with other optogenetic actuators and reporters. We demonstrate that Pd CO can be used to conduct reversible loss-of-function experiments in long-range projections of behaving animals, thereby enabling detailed synapse-specific functional circuit mapping. Pd CO is a switchable optogenetic tool for inhibiting synaptic transmission in neuronal terminals in vivo, as demonstrated in a variety of contexts mainly in the mouse.
ISSN:1548-7091
1548-7105
1548-7105
DOI:10.1038/s41592-024-02285-8