Catalytic asymmetric 4 + 2 dearomative photocycloadditions of anthracene and its derivatives with alkenylazaarenes
Photocatalysis through energy transfer has been investigated for the facilitation of [4 + 2] cycloaddition reactions. However, the high reactivity of radical species poses a challenging obstacle to achieving enantiocontrol with chiral catalysts, as no enantioselective examples have been reported thu...
Gespeichert in:
Veröffentlicht in: | Nature communications 2024-05, Vol.15 (1), p.4563 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Photocatalysis through energy transfer has been investigated for the facilitation of [4 + 2] cycloaddition reactions. However, the high reactivity of radical species poses a challenging obstacle to achieving enantiocontrol with chiral catalysts, as no enantioselective examples have been reported thus far. Here, we present the development of catalytic asymmetric [4 + 2] dearomative photocycloaddition involving anthracene and its derivatives with alkenylazaarenes. This accomplishment is achieved by utilizing a cooperative photosensitizer and chiral Brønsted acid catalysis platform. Importantly, this process enables the activation of anthracene substrates through energy transfer from triplet DPZ, thereby initiating a precise and stereoselective sequential transformation. The significance of our work is highlighted by the synthesis of a diverse range of pharmaceutical valuable cycloadducts incorporating attractive azaarenes, all obtained with high yields, ees, and drs. The broad substrate scope is further underscored by successful construction of all-carbon quaternary stereocenters and diverse adjacent stereocenters.Photocatalysis through energy transfer has been investigated for the facilitation of [4 + 2] cycloaddition reactions. However, the high reactivity of radical species poses a challenging obstacle to achieving enantiocontrol with chiral catalysts, as no enantioselective examples have been reported thus far. Here, we present the development of catalytic asymmetric [4 + 2] dearomative photocycloaddition involving anthracene and its derivatives with alkenylazaarenes. This accomplishment is achieved by utilizing a cooperative photosensitizer and chiral Brønsted acid catalysis platform. Importantly, this process enables the activation of anthracene substrates through energy transfer from triplet DPZ, thereby initiating a precise and stereoselective sequential transformation. The significance of our work is highlighted by the synthesis of a diverse range of pharmaceutical valuable cycloadducts incorporating attractive azaarenes, all obtained with high yields, ees, and drs. The broad substrate scope is further underscored by successful construction of all-carbon quaternary stereocenters and diverse adjacent stereocenters. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-024-48982-y |