Deciphering competitive interactions: Phosphate and organic matter binding on goethite through experimental and theoretical insights

The adsorption of phosphorus (P) onto active soil surfaces plays a pivotal role in immobilizing P, thereby influencing soil fertility and the filter function of soil to protect freshwater systems from eutrophication. Competitive anions, such as organic matter (OM), significantly affect the strength...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2024-08, Vol.940, p.173510, Article 173510
Hauptverfasser: Ahmed, Ashour A., Morshedizad, Mohsen, Kühn, Oliver, Leinweber, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The adsorption of phosphorus (P) onto active soil surfaces plays a pivotal role in immobilizing P, thereby influencing soil fertility and the filter function of soil to protect freshwater systems from eutrophication. Competitive anions, such as organic matter (OM), significantly affect the strength of this P-binding, eventually controlling P mobility and release, but surprisingly, these processes are insufficiently understood at the molecular level. In this study, we provide a molecular-level perspective on the influence of OM on P binding at the goethite-water interface using a combined experimental-theoretical approach. By examining the impact of citric acid (CIT) and histidine (HIS) on the adsorption of orthophosphate (OP), glycerol phosphate (GP), and inositol hexaphosphate (IHP) through adsorption experiments and molecular dynamics simulations, we address fundamental questions regarding P binding trends, OM interaction with the goethite surface, and the effect of OM on P adsorption. Our findings reveal the complex nature of P adsorption on goethite surfaces, where the specific OM, treatment conditions (covering the surface with OM or simultaneous co-adsorption), and initial concentrations collectively shape these interactions. P adsorption on goethite exhibits a binding strength increasing in the order of GP 
ISSN:0048-9697
1879-1026
1879-1026
DOI:10.1016/j.scitotenv.2024.173510