A computational modelling tool for prediction of head reshaping following endoscopic strip craniectomy and helmet therapy for the treatment of scaphocephaly
Endoscopic strip craniectomy followed by helmet therapy (ESCH) is a minimally invasive approach for correcting sagittal craniosynostosis. The treatment involves a patient-specific helmet designed to facilitate lateral growth while constraining sagittal expansion. In this study, finite element modell...
Gespeichert in:
Veröffentlicht in: | Computers in biology and medicine 2024-07, Vol.177, p.108633, Article 108633 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Endoscopic strip craniectomy followed by helmet therapy (ESCH) is a minimally invasive approach for correcting sagittal craniosynostosis. The treatment involves a patient-specific helmet designed to facilitate lateral growth while constraining sagittal expansion. In this study, finite element modelling was used to predict post-treatment head reshaping, improving our comprehension of the necessary helmet therapy duration.
Six patients (aged 11 weeks to 9 months) who underwent ESCH at Connecticut Children's Hospital were enrolled in this study. Day-1 post-operative 3D scans were used to create skin, skull, and intracranial volume models. Patient-specific helmet models, incorporating areas for growth, were designed based on post-operative imaging. Brain growth was simulated through thermal expansion, and treatments were modelled according to post-operative Imaging available. Mechanical testing and finite element modelling were combined to determine patient-specific mechanical properties from bone samples collected from surgery.
Validation compared simulated end-of-treatment skin surfaces with optical scans in terms of shape matching and cranial index estimation.
Comparison between the simulated post-treatment head shape and optical scans showed that on average 97.3 ± 2.1 % of surface data points were within a distance range of −3 to 3 mm. The cranial index was also accurately predicted (r = 0.91).
In conclusion, finite element models effectively predicted the ESCH cranial remodeling outcomes up to 8 months postoperatively. This computational tool offers valuable insights to guide and refine helmet treatment duration. This study also incorporated patient-specific material properties, enhancing the accuracy of the modeling approach.
[Display omitted]
•A patient-specific predictive model for endoscopic strip craniectomy followed by helmet therapy is proposed.•The model captures the post-treatment head shape and cranial index thanks to the patient-specific tissue characterization.•The finite element model is validated using follow up optical scans. |
---|---|
ISSN: | 0010-4825 1879-0534 1879-0534 |
DOI: | 10.1016/j.compbiomed.2024.108633 |