3D Printing of Composite Radiation Shielding for Broad Spectrum Protection of Electronic Systems

The miniaturization of satellite systems has compounded the need to protect microelectronic components from damaging radiation. Current approaches to mitigate this damage, such as indiscriminate mass shielding, built‐in redundancies, and radiation‐hardened electronics, introduce high size, weight, p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2024-08, Vol.36 (33), p.e2403822-n/a
Hauptverfasser: Rosh‐Gorsky, Avery, Coon, Austin, Beck, Devon, D'Onofrio, Richard, Binney, Quinn, Queen, Isaiah, Barney, Andrea, Longton, Robert, Long, Ashley Carlton, Gouker, Pascale, Ledford, Keri, Smith, Melissa Alyson, Cascio, Ethan, Konomi, Ksenofon, Duncan, Bradley
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 33
container_start_page e2403822
container_title Advanced materials (Weinheim)
container_volume 36
creator Rosh‐Gorsky, Avery
Coon, Austin
Beck, Devon
D'Onofrio, Richard
Binney, Quinn
Queen, Isaiah
Barney, Andrea
Longton, Robert
Long, Ashley Carlton
Gouker, Pascale
Ledford, Keri
Smith, Melissa Alyson
Cascio, Ethan
Konomi, Ksenofon
Duncan, Bradley
description The miniaturization of satellite systems has compounded the need to protect microelectronic components from damaging radiation. Current approaches to mitigate this damage, such as indiscriminate mass shielding, built‐in redundancies, and radiation‐hardened electronics, introduce high size, weight, power, and cost penalties that impact the overall performance of the satellite or launch opportunities. Additive manufacturing provides an appealing strategy to deposit radiation shielding only on susceptible components within an electronic assembly. Here, a versatile material platform and process to conformally print customized composite inks at room temperature directly and selectively onto commercial‐off‐the‐shelf electronics is described. The suite of inks uses a flexible styrene‐isoprene‐styrene block copolymer binder that can be filled with particles of different atomic densities for diverging radiation shielding capabilities. Additionally, the system enables the combination of multiple distinct particle species within the same printed structure. The method can produce graded shielding that offers improved radiation attenuation by tailoring both shield geometry and composition to provide comprehensive protection from a broad range of radiation species. The authors anticipate this alternative to traditional shielding methods will enable the rapid proliferation of the next generation of compact satellite designs. Current radiation mitigation techniques to protect electronics in space introduce a high size, weight, power and cost penalty to system design. An alternative additive manufacturing‐based method using composite inks to spot shield only vulnerable electronics minimizing the overall impact shielding causes to the system is described. The approach offers control over both the composition and geometry of shielding materials.
doi_str_mv 10.1002/adma.202403822
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3060749432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3060749432</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3122-99eac400fc5cd717487937ad2c37aaa2352e3a0554601e3f9b2ef673a736130f3</originalsourceid><addsrcrecordid>eNqFkM1LxDAQxYMouq5ePUrBi5euk0zTNsd11y9QFFfPNaapRtpmTVpk_3tT1g_w4mVmGH7vzfAIOaAwoQDsRJaNnDBgCWDO2AYZUc5onIDgm2QEAnks0iTfIbvevwGASCHdJjuY50CRpSPyhPPozpm2M-1LZKtoZpul9abT0b0sjeyMbaPFq9F1OQCVddGps7KMFkutOtc3QWy7MA5ckJ_Vw9q2RkWLle904_fIViVrr_e_-pg8np89zC7j69uLq9n0OlZIGYuF0FIlAJXiqsxoluSZwEyWTIUqJUPONErgPEmBaqzEM9NVmqHMMKUIFY7J8dp36ex7r31XNMYrXdey1bb3BUIKWSISZAE9-oO-2d614btACQROeTg-JpM1pZz13umqWDrTSLcqKBRD9sWQffGTfRAcftn2z40uf_DvsAMg1sCHqfXqH7tiOr-Z_pp_Ata4jv4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3093051579</pqid></control><display><type>article</type><title>3D Printing of Composite Radiation Shielding for Broad Spectrum Protection of Electronic Systems</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Rosh‐Gorsky, Avery ; Coon, Austin ; Beck, Devon ; D'Onofrio, Richard ; Binney, Quinn ; Queen, Isaiah ; Barney, Andrea ; Longton, Robert ; Long, Ashley Carlton ; Gouker, Pascale ; Ledford, Keri ; Smith, Melissa Alyson ; Cascio, Ethan ; Konomi, Ksenofon ; Duncan, Bradley</creator><creatorcontrib>Rosh‐Gorsky, Avery ; Coon, Austin ; Beck, Devon ; D'Onofrio, Richard ; Binney, Quinn ; Queen, Isaiah ; Barney, Andrea ; Longton, Robert ; Long, Ashley Carlton ; Gouker, Pascale ; Ledford, Keri ; Smith, Melissa Alyson ; Cascio, Ethan ; Konomi, Ksenofon ; Duncan, Bradley</creatorcontrib><description>The miniaturization of satellite systems has compounded the need to protect microelectronic components from damaging radiation. Current approaches to mitigate this damage, such as indiscriminate mass shielding, built‐in redundancies, and radiation‐hardened electronics, introduce high size, weight, power, and cost penalties that impact the overall performance of the satellite or launch opportunities. Additive manufacturing provides an appealing strategy to deposit radiation shielding only on susceptible components within an electronic assembly. Here, a versatile material platform and process to conformally print customized composite inks at room temperature directly and selectively onto commercial‐off‐the‐shelf electronics is described. The suite of inks uses a flexible styrene‐isoprene‐styrene block copolymer binder that can be filled with particles of different atomic densities for diverging radiation shielding capabilities. Additionally, the system enables the combination of multiple distinct particle species within the same printed structure. The method can produce graded shielding that offers improved radiation attenuation by tailoring both shield geometry and composition to provide comprehensive protection from a broad range of radiation species. The authors anticipate this alternative to traditional shielding methods will enable the rapid proliferation of the next generation of compact satellite designs. Current radiation mitigation techniques to protect electronics in space introduce a high size, weight, power and cost penalty to system design. An alternative additive manufacturing‐based method using composite inks to spot shield only vulnerable electronics minimizing the overall impact shielding causes to the system is described. The approach offers control over both the composition and geometry of shielding materials.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202403822</identifier><identifier>PMID: 38801326</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>3D printing ; Atomic structure ; Block copolymers ; composites ; Electronic assemblies ; Electronic systems ; Electronics ; graded materials ; Inks ; Isoprene ; Radiation ; Radiation damage ; Radiation hardening ; Radiation shielding ; Room temperature ; Styrenes ; Three dimensional composites ; Three dimensional printing</subject><ispartof>Advanced materials (Weinheim), 2024-08, Vol.36 (33), p.e2403822-n/a</ispartof><rights>2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH</rights><rights>2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3122-99eac400fc5cd717487937ad2c37aaa2352e3a0554601e3f9b2ef673a736130f3</cites><orcidid>0000-0002-6492-6393</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202403822$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202403822$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38801326$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rosh‐Gorsky, Avery</creatorcontrib><creatorcontrib>Coon, Austin</creatorcontrib><creatorcontrib>Beck, Devon</creatorcontrib><creatorcontrib>D'Onofrio, Richard</creatorcontrib><creatorcontrib>Binney, Quinn</creatorcontrib><creatorcontrib>Queen, Isaiah</creatorcontrib><creatorcontrib>Barney, Andrea</creatorcontrib><creatorcontrib>Longton, Robert</creatorcontrib><creatorcontrib>Long, Ashley Carlton</creatorcontrib><creatorcontrib>Gouker, Pascale</creatorcontrib><creatorcontrib>Ledford, Keri</creatorcontrib><creatorcontrib>Smith, Melissa Alyson</creatorcontrib><creatorcontrib>Cascio, Ethan</creatorcontrib><creatorcontrib>Konomi, Ksenofon</creatorcontrib><creatorcontrib>Duncan, Bradley</creatorcontrib><title>3D Printing of Composite Radiation Shielding for Broad Spectrum Protection of Electronic Systems</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>The miniaturization of satellite systems has compounded the need to protect microelectronic components from damaging radiation. Current approaches to mitigate this damage, such as indiscriminate mass shielding, built‐in redundancies, and radiation‐hardened electronics, introduce high size, weight, power, and cost penalties that impact the overall performance of the satellite or launch opportunities. Additive manufacturing provides an appealing strategy to deposit radiation shielding only on susceptible components within an electronic assembly. Here, a versatile material platform and process to conformally print customized composite inks at room temperature directly and selectively onto commercial‐off‐the‐shelf electronics is described. The suite of inks uses a flexible styrene‐isoprene‐styrene block copolymer binder that can be filled with particles of different atomic densities for diverging radiation shielding capabilities. Additionally, the system enables the combination of multiple distinct particle species within the same printed structure. The method can produce graded shielding that offers improved radiation attenuation by tailoring both shield geometry and composition to provide comprehensive protection from a broad range of radiation species. The authors anticipate this alternative to traditional shielding methods will enable the rapid proliferation of the next generation of compact satellite designs. Current radiation mitigation techniques to protect electronics in space introduce a high size, weight, power and cost penalty to system design. An alternative additive manufacturing‐based method using composite inks to spot shield only vulnerable electronics minimizing the overall impact shielding causes to the system is described. The approach offers control over both the composition and geometry of shielding materials.</description><subject>3D printing</subject><subject>Atomic structure</subject><subject>Block copolymers</subject><subject>composites</subject><subject>Electronic assemblies</subject><subject>Electronic systems</subject><subject>Electronics</subject><subject>graded materials</subject><subject>Inks</subject><subject>Isoprene</subject><subject>Radiation</subject><subject>Radiation damage</subject><subject>Radiation hardening</subject><subject>Radiation shielding</subject><subject>Room temperature</subject><subject>Styrenes</subject><subject>Three dimensional composites</subject><subject>Three dimensional printing</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkM1LxDAQxYMouq5ePUrBi5euk0zTNsd11y9QFFfPNaapRtpmTVpk_3tT1g_w4mVmGH7vzfAIOaAwoQDsRJaNnDBgCWDO2AYZUc5onIDgm2QEAnks0iTfIbvevwGASCHdJjuY50CRpSPyhPPozpm2M-1LZKtoZpul9abT0b0sjeyMbaPFq9F1OQCVddGps7KMFkutOtc3QWy7MA5ckJ_Vw9q2RkWLle904_fIViVrr_e_-pg8np89zC7j69uLq9n0OlZIGYuF0FIlAJXiqsxoluSZwEyWTIUqJUPONErgPEmBaqzEM9NVmqHMMKUIFY7J8dp36ex7r31XNMYrXdey1bb3BUIKWSISZAE9-oO-2d614btACQROeTg-JpM1pZz13umqWDrTSLcqKBRD9sWQffGTfRAcftn2z40uf_DvsAMg1sCHqfXqH7tiOr-Z_pp_Ata4jv4</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Rosh‐Gorsky, Avery</creator><creator>Coon, Austin</creator><creator>Beck, Devon</creator><creator>D'Onofrio, Richard</creator><creator>Binney, Quinn</creator><creator>Queen, Isaiah</creator><creator>Barney, Andrea</creator><creator>Longton, Robert</creator><creator>Long, Ashley Carlton</creator><creator>Gouker, Pascale</creator><creator>Ledford, Keri</creator><creator>Smith, Melissa Alyson</creator><creator>Cascio, Ethan</creator><creator>Konomi, Ksenofon</creator><creator>Duncan, Bradley</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6492-6393</orcidid></search><sort><creationdate>20240801</creationdate><title>3D Printing of Composite Radiation Shielding for Broad Spectrum Protection of Electronic Systems</title><author>Rosh‐Gorsky, Avery ; Coon, Austin ; Beck, Devon ; D'Onofrio, Richard ; Binney, Quinn ; Queen, Isaiah ; Barney, Andrea ; Longton, Robert ; Long, Ashley Carlton ; Gouker, Pascale ; Ledford, Keri ; Smith, Melissa Alyson ; Cascio, Ethan ; Konomi, Ksenofon ; Duncan, Bradley</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3122-99eac400fc5cd717487937ad2c37aaa2352e3a0554601e3f9b2ef673a736130f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3D printing</topic><topic>Atomic structure</topic><topic>Block copolymers</topic><topic>composites</topic><topic>Electronic assemblies</topic><topic>Electronic systems</topic><topic>Electronics</topic><topic>graded materials</topic><topic>Inks</topic><topic>Isoprene</topic><topic>Radiation</topic><topic>Radiation damage</topic><topic>Radiation hardening</topic><topic>Radiation shielding</topic><topic>Room temperature</topic><topic>Styrenes</topic><topic>Three dimensional composites</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rosh‐Gorsky, Avery</creatorcontrib><creatorcontrib>Coon, Austin</creatorcontrib><creatorcontrib>Beck, Devon</creatorcontrib><creatorcontrib>D'Onofrio, Richard</creatorcontrib><creatorcontrib>Binney, Quinn</creatorcontrib><creatorcontrib>Queen, Isaiah</creatorcontrib><creatorcontrib>Barney, Andrea</creatorcontrib><creatorcontrib>Longton, Robert</creatorcontrib><creatorcontrib>Long, Ashley Carlton</creatorcontrib><creatorcontrib>Gouker, Pascale</creatorcontrib><creatorcontrib>Ledford, Keri</creatorcontrib><creatorcontrib>Smith, Melissa Alyson</creatorcontrib><creatorcontrib>Cascio, Ethan</creatorcontrib><creatorcontrib>Konomi, Ksenofon</creatorcontrib><creatorcontrib>Duncan, Bradley</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rosh‐Gorsky, Avery</au><au>Coon, Austin</au><au>Beck, Devon</au><au>D'Onofrio, Richard</au><au>Binney, Quinn</au><au>Queen, Isaiah</au><au>Barney, Andrea</au><au>Longton, Robert</au><au>Long, Ashley Carlton</au><au>Gouker, Pascale</au><au>Ledford, Keri</au><au>Smith, Melissa Alyson</au><au>Cascio, Ethan</au><au>Konomi, Ksenofon</au><au>Duncan, Bradley</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Printing of Composite Radiation Shielding for Broad Spectrum Protection of Electronic Systems</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>36</volume><issue>33</issue><spage>e2403822</spage><epage>n/a</epage><pages>e2403822-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>The miniaturization of satellite systems has compounded the need to protect microelectronic components from damaging radiation. Current approaches to mitigate this damage, such as indiscriminate mass shielding, built‐in redundancies, and radiation‐hardened electronics, introduce high size, weight, power, and cost penalties that impact the overall performance of the satellite or launch opportunities. Additive manufacturing provides an appealing strategy to deposit radiation shielding only on susceptible components within an electronic assembly. Here, a versatile material platform and process to conformally print customized composite inks at room temperature directly and selectively onto commercial‐off‐the‐shelf electronics is described. The suite of inks uses a flexible styrene‐isoprene‐styrene block copolymer binder that can be filled with particles of different atomic densities for diverging radiation shielding capabilities. Additionally, the system enables the combination of multiple distinct particle species within the same printed structure. The method can produce graded shielding that offers improved radiation attenuation by tailoring both shield geometry and composition to provide comprehensive protection from a broad range of radiation species. The authors anticipate this alternative to traditional shielding methods will enable the rapid proliferation of the next generation of compact satellite designs. Current radiation mitigation techniques to protect electronics in space introduce a high size, weight, power and cost penalty to system design. An alternative additive manufacturing‐based method using composite inks to spot shield only vulnerable electronics minimizing the overall impact shielding causes to the system is described. The approach offers control over both the composition and geometry of shielding materials.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38801326</pmid><doi>10.1002/adma.202403822</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6492-6393</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-08, Vol.36 (33), p.e2403822-n/a
issn 0935-9648
1521-4095
1521-4095
language eng
recordid cdi_proquest_miscellaneous_3060749432
source Wiley Online Library Journals Frontfile Complete
subjects 3D printing
Atomic structure
Block copolymers
composites
Electronic assemblies
Electronic systems
Electronics
graded materials
Inks
Isoprene
Radiation
Radiation damage
Radiation hardening
Radiation shielding
Room temperature
Styrenes
Three dimensional composites
Three dimensional printing
title 3D Printing of Composite Radiation Shielding for Broad Spectrum Protection of Electronic Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A09%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Printing%20of%20Composite%20Radiation%20Shielding%20for%20Broad%20Spectrum%20Protection%20of%20Electronic%20Systems&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Rosh%E2%80%90Gorsky,%20Avery&rft.date=2024-08-01&rft.volume=36&rft.issue=33&rft.spage=e2403822&rft.epage=n/a&rft.pages=e2403822-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202403822&rft_dat=%3Cproquest_cross%3E3060749432%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3093051579&rft_id=info:pmid/38801326&rfr_iscdi=true