A data-driven single-cell and spatial transcriptomic map of the human prefrontal cortex

The molecular organization of the human neocortex historically has been studied in the context of its histological layers. However, emerging spatial transcriptomic technologies have enabled unbiased identification of transcriptionally defined spatial domains that move beyond classic cytoarchitecture...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2024-05, Vol.384 (6698), p.eadh1938
Hauptverfasser: Huuki-Myers, Louise A, Spangler, Abby, Eagles, Nicholas J, Montgomery, Kelsey D, Kwon, Sang Ho, Guo, Boyi, Grant-Peters, Melissa, Divecha, Heena R, Tippani, Madhavi, Sriworarat, Chaichontat, Nguyen, Annie B, Ravichandran, Prashanthi, Tran, Matthew N, Seyedian, Arta, Hyde, Thomas M, Kleinman, Joel E, Battle, Alexis, Page, Stephanie C, Ryten, Mina, Hicks, Stephanie C, Martinowich, Keri, Collado-Torres, Leonardo, Maynard, Kristen R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The molecular organization of the human neocortex historically has been studied in the context of its histological layers. However, emerging spatial transcriptomic technologies have enabled unbiased identification of transcriptionally defined spatial domains that move beyond classic cytoarchitecture. We used the Visium spatial gene expression platform to generate a data-driven molecular neuroanatomical atlas across the anterior-posterior axis of the human dorsolateral prefrontal cortex. Integration with paired single-nucleus RNA-sequencing data revealed distinct cell type compositions and cell-cell interactions across spatial domains. Using PsychENCODE and publicly available data, we mapped the enrichment of cell types and genes associated with neuropsychiatric disorders to discrete spatial domains.
ISSN:0036-8075
1095-9203
1095-9203
DOI:10.1126/science.adh1938