Dysregulation of lncRNA MALAT1 Contributes to Lung Cancer in African Americans by Modulating the Tumor Immune Microenvironment

African American (AA) populations present with notably higher incidence and mortality rates from lung cancer in comparison to other racial groups. Here, we elucidated the contribution of long non-coding RNAs (lncRNAs) in the racial disparities and their potential clinical applications in both diagno...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancers 2024-05, Vol.16 (10), p.1876
Hauptverfasser: Li, Jin, Dhilipkannah, Pushpa, Holden, Van K, Sachdeva, Ashutosh, Todd, Nevins W, Jiang, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:African American (AA) populations present with notably higher incidence and mortality rates from lung cancer in comparison to other racial groups. Here, we elucidated the contribution of long non-coding RNAs (lncRNAs) in the racial disparities and their potential clinical applications in both diagnosis and therapeutic strategies. AA patients had elevated plasma levels of MALAT1 and PVT1 compared with cancer-free smokers. Incorporating these lncRNAs as plasma biomarkers, along with smoking history, achieved 81% accuracy in diagnosis of lung cancer in AA patients. We observed a rise in MALAT1 expression, correlating with increased levels of monocyte chemoattractant protein-1 (MCP-1) and CD68, CD163, CD206, indicative of tumor-associated macrophages in lung tumors of AA patients. Forced MALAT1 expression led to enhanced growth and invasiveness of lung cancer cells, both in vitro and in vivo, accompanied by elevated levels of MCP-1, CD68, CD163, CD206, and KI67. Mechanistically, MALAT1 acted as a competing endogenous RNA to directly interact with miR-206, subsequently affecting MCP-1 expression and macrophage activity, and enhanced the tumorigenesis. Targeting MALAT1 significantly reduced tumor sizes in animal models. Therefore, dysregulated MALAT1 contributes to lung cancer disparities in AAs by modulating the tumor immune microenvironment through its interaction with miR-206, thereby presenting novel diagnostic and therapeutic targets.
ISSN:2072-6694
2072-6694
DOI:10.3390/cancers16101876