Performance of Earth Plasters with Graphene-Based Additive

A central debate is the improvement in the mechanical and water resistance of sustainable earthen architecture without additives or stabilizers. This innovative work aims to test the effects of a graphene-based additive, optimized for the improvement in concrete properties, on the strength and water...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2024-05, Vol.17 (10), p.2356
Hauptverfasser: Gallo Stampino, Paola, Ceccarelli, Letizia, Caruso, Marco, Mascheretti, Laura, Dotelli, Giovanni, Sabbadini, Sergio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A central debate is the improvement in the mechanical and water resistance of sustainable earthen architecture without additives or stabilizers. This innovative work aims to test the effects of a graphene-based additive, optimized for the improvement in concrete properties, on the strength and water resistance of raw-earth plasters without any stabilizer other than sand. Given the heterogeneous nature of raw earth, three different soils were tested by adding three increasing graphene-based additive contents (0.01, 0.05 and 0.1 wt% of the earth-sand proportion). The link between soil intrinsic properties, i.e., geotechnical and mineralogical properties, and their interaction with the additive were investigated through geotechnical characterization, as well as mineralogical characterization, by XRD and ATR-FTIR analyses. The experimental tests carried out focused on the adhesion properties of the twelve different plasters on standard hollow bricks and on their interaction with water through capillary rise tests and erosion resistance tests. Conclusion from the experimental tests suggests that the graphene-based additive in earth plasters, by increasing the cohesion of the mixture, improves their adhesion performance.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma17102356