Data-Physics Fusion-Driven Defect Predictions for Titanium Alloy Casing Using Neural Network

The quality of Ti alloy casing is crucial for the safe and stable operation of aero engines. However, the fluctuation of key process parameters during the investment casting process of titanium alloy casings has a significant influence on the volume and number of porosity defects, and this influence...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2024-05, Vol.17 (10), p.2226
Hauptverfasser: Yu, Peng, Ji, Xiaoyuan, Sun, Tao, Zhou, Wenhao, Li, Wen, Xu, Qian, Qie, Xiwang, Yin, Yajun, Shen, Xu, Zhou, Jianxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The quality of Ti alloy casing is crucial for the safe and stable operation of aero engines. However, the fluctuation of key process parameters during the investment casting process of titanium alloy casings has a significant influence on the volume and number of porosity defects, and this influence cannot be effectively suppressed at present. Therefore, this paper proposes a strategy to control the influence of process parameters on shrinkage volume and number. This study constructed multiple regression prediction models and neural network prediction models of porosity volume and number for a ZTC4 casing by simulating the gravity investment casting process. The results show that the multiple regression prediction model and neural network prediction model of shrinkage cavity total volume have an accuracy of over 99%. The accuracy of the neural network prediction model is higher than that of the multiple regression model, and the neural network model realizes the accurate prediction of shrinkage defect volume and defect number through pouring temperature, pouring time, and mold shell temperature. The sensitivity degree of casing defects to key process parameters, from high to low, is as follows: pouring temperature, pouring time, and mold temperature. Further optimizing the key process parameter window reduces the influence of process parameter fluctuation on the volume and number of porosity defects in casing castings. This study provides a reference for actual production control process parameters to reduce shrinkage cavity and loose defects.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma17102226