Molecularly Imprinted Polymer-Based Electrochemical Sensor for the Detection of Azoxystrobin in Aqueous Media

This work presents an electrochemical sensor detecting a fungicide-azoxystrobin (AZO) in aqueous environments. This AZO sensor utilizes a thin-film metal electrode (TFME) combined with an AZO-selective molecularly imprinted polymer (AZO-MIP). The AZO-MIP was directly generated on TFME through electr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2024-05, Vol.16 (10), p.1394
Hauptverfasser: Nguyen, Vu Bao Chau, Reut, Jekaterina, Rappich, Jörg, Hinrichs, Karsten, Syritski, Vitali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work presents an electrochemical sensor detecting a fungicide-azoxystrobin (AZO) in aqueous environments. This AZO sensor utilizes a thin-film metal electrode (TFME) combined with an AZO-selective molecularly imprinted polymer (AZO-MIP). The AZO-MIP was directly generated on TFME through electrochemical polymerization from the solution containing two functional monomers: aniline (Ani) and m-phenylenediamine (mPD), and the template: AZO, which was afterwards removed to form AZO-selective cavities in the polymer matrix. The AZO-MIP preparation was characterized by electrochemical and ellipsometry measurements. Optimization of the synthesis parameters, including the charge density applied during electrodeposition, the monomer-to-template ratio, was performed to enhance the sensor's performance. The results demonstrated that the AZO sensor achieved a low limit of detection (LOD) of 3.6 nM and a limit of quantification (LOQ) of 11.8 nM in tap water, indicating its sensitivity in a complex aqueous environment. The sensor also exhibited satisfactory selectivity for AZO in both ultrapure and tap-water samples and achieved a good recovery (94-119%) for the target analyte. This study highlights the potential of MIP-based electrochemical sensors for the rapid and accurate detection of fungicide contaminants in water, contributing to the advancement of analytical tools for water-quality monitoring and risk assessment.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym16101394