Small but strong: herbivory by sap-feeding insect reduces plant progeny growth but enhances direct and indirect anti-herbivore defenses
The transmission of resistance traits to herbivores across subsequent generations is an important strategy employed by plants to enhance their fitness in environments with high herbivore pressure. However, our understanding of the impact of maternal herbivory on direct and indirect induced chemical...
Gespeichert in:
Veröffentlicht in: | Oecologia 2024-05, Vol.205 (1), p.191-201 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The transmission of resistance traits to herbivores across subsequent generations is an important strategy employed by plants to enhance their fitness in environments with high herbivore pressure. However, our understanding of the impact of maternal herbivory on direct and indirect induced chemical defenses of progeny, as well as the associated costs, is currently limited to herbivory by leaf-chewing insects. In this study, we investigated the transgenerational effects of a sap-feeding insect, the green peach aphid
Myzus persicae
, on direct and indirect chemical defenses of bell pepper plants (
Capsicum annuum
), and whether the effects entail costs to plant growth. Aphid herbivory on parental plants led to a reduced number of seeds per fruit, which exhibited lower germination rates and produced smaller seedlings compared to those from non-infested parental plants. In contrast, the progeny of aphid-infested plants were less preferred as hosts by aphids and less suitable than the progeny of non-infested plants. This enhanced resistance in the progeny of aphid-infested plants coincided with elevated levels of both constitutive and herbivore-induced total phenolic compounds, compared to the progeny of non-infested plants. Furthermore, the progeny of aphid-infested plants emitted herbivore-induced plant volatiles (HIPVs) that were more attractive to the aphid parasitoid
Aphidius platensis
than those emitted by the progeny of non-infested plants. Our results indicate that herbivory by sap-feeding insect induces transgenerational resistance on progeny bell pepper plants, albeit at the expense of vegetative growth. |
---|---|
ISSN: | 0029-8549 1432-1939 1432-1939 |
DOI: | 10.1007/s00442-024-05567-2 |