A comparative analysis of different augmentations for brain images
Deep learning (DL) requires a large amount of training data to improve performance and prevent overfitting. To overcome these difficulties, we need to increase the size of the training dataset. This can be done by augmentation on a small dataset. The augmentation approaches must enhance the model’s...
Gespeichert in:
Veröffentlicht in: | Medical & biological engineering & computing 2024-10, Vol.62 (10), p.3123-3150 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3150 |
---|---|
container_issue | 10 |
container_start_page | 3123 |
container_title | Medical & biological engineering & computing |
container_volume | 62 |
creator | Bajaj, Shilpa Bala, Manju Angurala, Mohit |
description | Deep learning (DL) requires a large amount of training data to improve performance and prevent overfitting. To overcome these difficulties, we need to increase the size of the training dataset. This can be done by augmentation on a small dataset. The augmentation approaches must enhance the model’s performance during the learning period. There are several types of transformations that can be applied to medical images. These transformations can be applied to the entire dataset or to a subset of the data, depending on the desired outcome. In this study, we categorize data augmentation methods into four groups: Absent augmentation, where no modifications are made; basic augmentation, which includes brightness and contrast adjustments; intermediate augmentation, encompassing a wider array of transformations like rotation, flipping, and shifting in addition to brightness and contrast adjustments; and advanced augmentation, where all transformation layers are employed. We plan to conduct a comprehensive analysis to determine which group performs best when applied to brain CT images. This evaluation aims to identify the augmentation group that produces the most favorable results in terms of improving model accuracy, minimizing diagnostic errors, and ensuring the robustness of the model in the context of brain CT image analysis.
Graphical Abstract |
doi_str_mv | 10.1007/s11517-024-03127-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3060375188</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3101379097</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-ff39732cbb3688ad1625d82f793ce64a2f383d29cbc2a6282b13dc12daa4fae83</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EoqXwBxhQJBaWwJ3txO5YKr6kSiwwW45jV6nyUewEiX-PSwpIDEw33HPv3T2EnCNcI4C4CYgZihQoT4EhFak4IFMUHFPgnB-SKSCHFBDlhJyEsAGgmFF-TCZMCkmlhCm5XSSma7ba6756t4ludf0RqpB0Likr56y3bZ_oYd3EGpGuDYnrfFJ4XbVJ1ei1DafkyOk62LN9nZHX-7uX5WO6en54Wi5WqWE071Pn2FwwaoqC5VLqEnOalZI6MWfG5lxTxyQr6dwUhuqcSlogKw3SUmvutJVsRq7G3K3v3gYbetVUwdi61q3thqAY5MBEhnKHXv5BN93g42-RQkAm5hBvmRE6UsZ3IXjr1NbHl_yHQlA7w2o0rKJh9WVY7YYu9tFD0djyZ-RbaQTYCITYatfW_-7-J_YTy4SFqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3101379097</pqid></control><display><type>article</type><title>A comparative analysis of different augmentations for brain images</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bajaj, Shilpa ; Bala, Manju ; Angurala, Mohit</creator><creatorcontrib>Bajaj, Shilpa ; Bala, Manju ; Angurala, Mohit</creatorcontrib><description>Deep learning (DL) requires a large amount of training data to improve performance and prevent overfitting. To overcome these difficulties, we need to increase the size of the training dataset. This can be done by augmentation on a small dataset. The augmentation approaches must enhance the model’s performance during the learning period. There are several types of transformations that can be applied to medical images. These transformations can be applied to the entire dataset or to a subset of the data, depending on the desired outcome. In this study, we categorize data augmentation methods into four groups: Absent augmentation, where no modifications are made; basic augmentation, which includes brightness and contrast adjustments; intermediate augmentation, encompassing a wider array of transformations like rotation, flipping, and shifting in addition to brightness and contrast adjustments; and advanced augmentation, where all transformation layers are employed. We plan to conduct a comprehensive analysis to determine which group performs best when applied to brain CT images. This evaluation aims to identify the augmentation group that produces the most favorable results in terms of improving model accuracy, minimizing diagnostic errors, and ensuring the robustness of the model in the context of brain CT image analysis.
Graphical Abstract</description><identifier>ISSN: 0140-0118</identifier><identifier>ISSN: 1741-0444</identifier><identifier>EISSN: 1741-0444</identifier><identifier>DOI: 10.1007/s11517-024-03127-7</identifier><identifier>PMID: 38782880</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Brain ; Brightness ; Comparative analysis ; Computed tomography ; Computer Applications ; Data augmentation ; Datasets ; Deep learning ; Group dynamics ; Human Physiology ; Image analysis ; Image contrast ; Image enhancement ; Image processing ; Imaging ; Machine learning ; Medical imaging ; Neuroimaging ; Original Article ; Performance enhancement ; Radiology</subject><ispartof>Medical & biological engineering & computing, 2024-10, Vol.62 (10), p.3123-3150</ispartof><rights>International Federation for Medical and Biological Engineering 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. International Federation for Medical and Biological Engineering.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c326t-ff39732cbb3688ad1625d82f793ce64a2f383d29cbc2a6282b13dc12daa4fae83</cites><orcidid>0000-0002-8888-9750</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11517-024-03127-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11517-024-03127-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38782880$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bajaj, Shilpa</creatorcontrib><creatorcontrib>Bala, Manju</creatorcontrib><creatorcontrib>Angurala, Mohit</creatorcontrib><title>A comparative analysis of different augmentations for brain images</title><title>Medical & biological engineering & computing</title><addtitle>Med Biol Eng Comput</addtitle><addtitle>Med Biol Eng Comput</addtitle><description>Deep learning (DL) requires a large amount of training data to improve performance and prevent overfitting. To overcome these difficulties, we need to increase the size of the training dataset. This can be done by augmentation on a small dataset. The augmentation approaches must enhance the model’s performance during the learning period. There are several types of transformations that can be applied to medical images. These transformations can be applied to the entire dataset or to a subset of the data, depending on the desired outcome. In this study, we categorize data augmentation methods into four groups: Absent augmentation, where no modifications are made; basic augmentation, which includes brightness and contrast adjustments; intermediate augmentation, encompassing a wider array of transformations like rotation, flipping, and shifting in addition to brightness and contrast adjustments; and advanced augmentation, where all transformation layers are employed. We plan to conduct a comprehensive analysis to determine which group performs best when applied to brain CT images. This evaluation aims to identify the augmentation group that produces the most favorable results in terms of improving model accuracy, minimizing diagnostic errors, and ensuring the robustness of the model in the context of brain CT image analysis.
Graphical Abstract</description><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Brain</subject><subject>Brightness</subject><subject>Comparative analysis</subject><subject>Computed tomography</subject><subject>Computer Applications</subject><subject>Data augmentation</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Group dynamics</subject><subject>Human Physiology</subject><subject>Image analysis</subject><subject>Image contrast</subject><subject>Image enhancement</subject><subject>Image processing</subject><subject>Imaging</subject><subject>Machine learning</subject><subject>Medical imaging</subject><subject>Neuroimaging</subject><subject>Original Article</subject><subject>Performance enhancement</subject><subject>Radiology</subject><issn>0140-0118</issn><issn>1741-0444</issn><issn>1741-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EoqXwBxhQJBaWwJ3txO5YKr6kSiwwW45jV6nyUewEiX-PSwpIDEw33HPv3T2EnCNcI4C4CYgZihQoT4EhFak4IFMUHFPgnB-SKSCHFBDlhJyEsAGgmFF-TCZMCkmlhCm5XSSma7ba6756t4ludf0RqpB0Likr56y3bZ_oYd3EGpGuDYnrfFJ4XbVJ1ei1DafkyOk62LN9nZHX-7uX5WO6en54Wi5WqWE071Pn2FwwaoqC5VLqEnOalZI6MWfG5lxTxyQr6dwUhuqcSlogKw3SUmvutJVsRq7G3K3v3gYbetVUwdi61q3thqAY5MBEhnKHXv5BN93g42-RQkAm5hBvmRE6UsZ3IXjr1NbHl_yHQlA7w2o0rKJh9WVY7YYu9tFD0djyZ-RbaQTYCITYatfW_-7-J_YTy4SFqQ</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Bajaj, Shilpa</creator><creator>Bala, Manju</creator><creator>Angurala, Mohit</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7TS</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8888-9750</orcidid></search><sort><creationdate>20241001</creationdate><title>A comparative analysis of different augmentations for brain images</title><author>Bajaj, Shilpa ; Bala, Manju ; Angurala, Mohit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-ff39732cbb3688ad1625d82f793ce64a2f383d29cbc2a6282b13dc12daa4fae83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Brain</topic><topic>Brightness</topic><topic>Comparative analysis</topic><topic>Computed tomography</topic><topic>Computer Applications</topic><topic>Data augmentation</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Group dynamics</topic><topic>Human Physiology</topic><topic>Image analysis</topic><topic>Image contrast</topic><topic>Image enhancement</topic><topic>Image processing</topic><topic>Imaging</topic><topic>Machine learning</topic><topic>Medical imaging</topic><topic>Neuroimaging</topic><topic>Original Article</topic><topic>Performance enhancement</topic><topic>Radiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bajaj, Shilpa</creatorcontrib><creatorcontrib>Bala, Manju</creatorcontrib><creatorcontrib>Angurala, Mohit</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Medical & biological engineering & computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bajaj, Shilpa</au><au>Bala, Manju</au><au>Angurala, Mohit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comparative analysis of different augmentations for brain images</atitle><jtitle>Medical & biological engineering & computing</jtitle><stitle>Med Biol Eng Comput</stitle><addtitle>Med Biol Eng Comput</addtitle><date>2024-10-01</date><risdate>2024</risdate><volume>62</volume><issue>10</issue><spage>3123</spage><epage>3150</epage><pages>3123-3150</pages><issn>0140-0118</issn><issn>1741-0444</issn><eissn>1741-0444</eissn><abstract>Deep learning (DL) requires a large amount of training data to improve performance and prevent overfitting. To overcome these difficulties, we need to increase the size of the training dataset. This can be done by augmentation on a small dataset. The augmentation approaches must enhance the model’s performance during the learning period. There are several types of transformations that can be applied to medical images. These transformations can be applied to the entire dataset or to a subset of the data, depending on the desired outcome. In this study, we categorize data augmentation methods into four groups: Absent augmentation, where no modifications are made; basic augmentation, which includes brightness and contrast adjustments; intermediate augmentation, encompassing a wider array of transformations like rotation, flipping, and shifting in addition to brightness and contrast adjustments; and advanced augmentation, where all transformation layers are employed. We plan to conduct a comprehensive analysis to determine which group performs best when applied to brain CT images. This evaluation aims to identify the augmentation group that produces the most favorable results in terms of improving model accuracy, minimizing diagnostic errors, and ensuring the robustness of the model in the context of brain CT image analysis.
Graphical Abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>38782880</pmid><doi>10.1007/s11517-024-03127-7</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0002-8888-9750</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0140-0118 |
ispartof | Medical & biological engineering & computing, 2024-10, Vol.62 (10), p.3123-3150 |
issn | 0140-0118 1741-0444 1741-0444 |
language | eng |
recordid | cdi_proquest_miscellaneous_3060375188 |
source | SpringerLink Journals - AutoHoldings |
subjects | Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Brain Brightness Comparative analysis Computed tomography Computer Applications Data augmentation Datasets Deep learning Group dynamics Human Physiology Image analysis Image contrast Image enhancement Image processing Imaging Machine learning Medical imaging Neuroimaging Original Article Performance enhancement Radiology |
title | A comparative analysis of different augmentations for brain images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A21%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comparative%20analysis%20of%20different%20augmentations%20for%20brain%20images&rft.jtitle=Medical%20&%20biological%20engineering%20&%20computing&rft.au=Bajaj,%20Shilpa&rft.date=2024-10-01&rft.volume=62&rft.issue=10&rft.spage=3123&rft.epage=3150&rft.pages=3123-3150&rft.issn=0140-0118&rft.eissn=1741-0444&rft_id=info:doi/10.1007/s11517-024-03127-7&rft_dat=%3Cproquest_cross%3E3101379097%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3101379097&rft_id=info:pmid/38782880&rfr_iscdi=true |