A comparative analysis of different augmentations for brain images

Deep learning (DL) requires a large amount of training data to improve performance and prevent overfitting. To overcome these difficulties, we need to increase the size of the training dataset. This can be done by augmentation on a small dataset. The augmentation approaches must enhance the model’s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical & biological engineering & computing 2024-10, Vol.62 (10), p.3123-3150
Hauptverfasser: Bajaj, Shilpa, Bala, Manju, Angurala, Mohit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Deep learning (DL) requires a large amount of training data to improve performance and prevent overfitting. To overcome these difficulties, we need to increase the size of the training dataset. This can be done by augmentation on a small dataset. The augmentation approaches must enhance the model’s performance during the learning period. There are several types of transformations that can be applied to medical images. These transformations can be applied to the entire dataset or to a subset of the data, depending on the desired outcome. In this study, we categorize data augmentation methods into four groups: Absent augmentation, where no modifications are made; basic augmentation, which includes brightness and contrast adjustments; intermediate augmentation, encompassing a wider array of transformations like rotation, flipping, and shifting in addition to brightness and contrast adjustments; and advanced augmentation, where all transformation layers are employed. We plan to conduct a comprehensive analysis to determine which group performs best when applied to brain CT images. This evaluation aims to identify the augmentation group that produces the most favorable results in terms of improving model accuracy, minimizing diagnostic errors, and ensuring the robustness of the model in the context of brain CT image analysis. Graphical Abstract
ISSN:0140-0118
1741-0444
1741-0444
DOI:10.1007/s11517-024-03127-7