Boron-doped reduced graphene oxide as an efficient cathode in microbial fuel cells for biological toxicity detection

•Boron doping brought more active sites and enhanced charge transfer.•B-rGO-2 improved ORR efficiency by 10 % due to enhanced oxygen permeability.•B-rGO-2-modified MFCs boosted the power density (411 mW m−2).•The voltage linearly correlated with SBDS concentration (R2 = 0.973). Electrodes with super...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioresource technology 2024-07, Vol.403, p.130883-130883, Article 130883
Hauptverfasser: Lan, Ruisong, Liu, Lihua, Feng, Han, Chen, Bor-yann, Shi, Xiuding, Hong, Junming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 130883
container_issue
container_start_page 130883
container_title Bioresource technology
container_volume 403
creator Lan, Ruisong
Liu, Lihua
Feng, Han
Chen, Bor-yann
Shi, Xiuding
Hong, Junming
description •Boron doping brought more active sites and enhanced charge transfer.•B-rGO-2 improved ORR efficiency by 10 % due to enhanced oxygen permeability.•B-rGO-2-modified MFCs boosted the power density (411 mW m−2).•The voltage linearly correlated with SBDS concentration (R2 = 0.973). Electrodes with superior stability and sensitivity are highly desirable in advancing the toxicity detection efficiency of microbial fuel cells (MFCs). Herein, boron-doped reduced graphene oxide (B-rGO) was synthesized and utilized as an efficient cathode candidate in an MFCs system for sensitive sodium dodecylbenzene sulfonate (SDBS) detection. Boron doping introduces additional defects and improves the dispersibility and oxygen permeability, thereby enhancing the oxygen reduction reaction (ORR) efficiency. The B-rGO-based cathode has demonstrated significantly improved output voltage and power density, marking improvements of 75 % and 58 % over their undoped counterparts, respectively. Furthermore, it also exhibited remarkable linear sensitivity to SDBS concentrations across a broad range (0.2–15 mg/L). Notably, the cathode maintained excellent stability within the test range and showed significant reversibility for SDBS concentrations between 0.2 and 3 mg/L. The highly sensitive and stable B-rGO-based cathode is inspiring for developing more practical and cost-effective toxicant sensing devices.
doi_str_mv 10.1016/j.biortech.2024.130883
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3060371860</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960852424005868</els_id><sourcerecordid>3060371860</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-45827fe0e7cd3795c2f2b4331ca9dc9db0befa6e2f893538594b66828add2aa3</originalsourceid><addsrcrecordid>eNqFkE1PwzAMhiMEgjH4CyhHLh35aJv0xof4kiZx4R6licMydc1IUgT_nkwDrlxsyX5tv34QuqBkQQltr9aL3oeYwawWjLB6QTmRkh-gGZWCV6wT7SGaka4llWxYfYJOU1oTQjgV7BidcCmklETMUL4NMYyVDVuwOIKdTMlvUW9XMAIOn94C1gnrEYNz3ngYMzY6r0Kp-xFvvImh93rAboIBGxiGhF2IuLgbwps3pZPLFuPzF7ZQ_GYfxjN05PSQ4Pwnz9Hrw_3r3VO1fHl8vrtZVobTJld1I5lwQEAYy0XXGOZYX3NOje6s6WxPenC6BeZkxxsum67u21Yyqa1lWvM5utyv3cbwPkHKauPTzqIeIUxJcdISLqgscY7avbS8k1IEp7bRb3T8UpSoHXC1Vr_A1Q642gMvgxc_N6Z-A_Zv7JdwEVzvBVAe_fAQVdpRLJh9LDSUDf6_G9-Cm5dS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3060371860</pqid></control><display><type>article</type><title>Boron-doped reduced graphene oxide as an efficient cathode in microbial fuel cells for biological toxicity detection</title><source>Elsevier ScienceDirect Journals</source><creator>Lan, Ruisong ; Liu, Lihua ; Feng, Han ; Chen, Bor-yann ; Shi, Xiuding ; Hong, Junming</creator><creatorcontrib>Lan, Ruisong ; Liu, Lihua ; Feng, Han ; Chen, Bor-yann ; Shi, Xiuding ; Hong, Junming</creatorcontrib><description>•Boron doping brought more active sites and enhanced charge transfer.•B-rGO-2 improved ORR efficiency by 10 % due to enhanced oxygen permeability.•B-rGO-2-modified MFCs boosted the power density (411 mW m−2).•The voltage linearly correlated with SBDS concentration (R2 = 0.973). Electrodes with superior stability and sensitivity are highly desirable in advancing the toxicity detection efficiency of microbial fuel cells (MFCs). Herein, boron-doped reduced graphene oxide (B-rGO) was synthesized and utilized as an efficient cathode candidate in an MFCs system for sensitive sodium dodecylbenzene sulfonate (SDBS) detection. Boron doping introduces additional defects and improves the dispersibility and oxygen permeability, thereby enhancing the oxygen reduction reaction (ORR) efficiency. The B-rGO-based cathode has demonstrated significantly improved output voltage and power density, marking improvements of 75 % and 58 % over their undoped counterparts, respectively. Furthermore, it also exhibited remarkable linear sensitivity to SDBS concentrations across a broad range (0.2–15 mg/L). Notably, the cathode maintained excellent stability within the test range and showed significant reversibility for SDBS concentrations between 0.2 and 3 mg/L. The highly sensitive and stable B-rGO-based cathode is inspiring for developing more practical and cost-effective toxicant sensing devices.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2024.130883</identifier><identifier>PMID: 38788807</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>B-rGO ; MFCs cathode ; ORR efficiency ; SDBS toxicity sensing</subject><ispartof>Bioresource technology, 2024-07, Vol.403, p.130883-130883, Article 130883</ispartof><rights>2024 Elsevier Ltd</rights><rights>Copyright © 2024. Published by Elsevier Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c315t-45827fe0e7cd3795c2f2b4331ca9dc9db0befa6e2f893538594b66828add2aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0960852424005868$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38788807$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lan, Ruisong</creatorcontrib><creatorcontrib>Liu, Lihua</creatorcontrib><creatorcontrib>Feng, Han</creatorcontrib><creatorcontrib>Chen, Bor-yann</creatorcontrib><creatorcontrib>Shi, Xiuding</creatorcontrib><creatorcontrib>Hong, Junming</creatorcontrib><title>Boron-doped reduced graphene oxide as an efficient cathode in microbial fuel cells for biological toxicity detection</title><title>Bioresource technology</title><addtitle>Bioresour Technol</addtitle><description>•Boron doping brought more active sites and enhanced charge transfer.•B-rGO-2 improved ORR efficiency by 10 % due to enhanced oxygen permeability.•B-rGO-2-modified MFCs boosted the power density (411 mW m−2).•The voltage linearly correlated with SBDS concentration (R2 = 0.973). Electrodes with superior stability and sensitivity are highly desirable in advancing the toxicity detection efficiency of microbial fuel cells (MFCs). Herein, boron-doped reduced graphene oxide (B-rGO) was synthesized and utilized as an efficient cathode candidate in an MFCs system for sensitive sodium dodecylbenzene sulfonate (SDBS) detection. Boron doping introduces additional defects and improves the dispersibility and oxygen permeability, thereby enhancing the oxygen reduction reaction (ORR) efficiency. The B-rGO-based cathode has demonstrated significantly improved output voltage and power density, marking improvements of 75 % and 58 % over their undoped counterparts, respectively. Furthermore, it also exhibited remarkable linear sensitivity to SDBS concentrations across a broad range (0.2–15 mg/L). Notably, the cathode maintained excellent stability within the test range and showed significant reversibility for SDBS concentrations between 0.2 and 3 mg/L. The highly sensitive and stable B-rGO-based cathode is inspiring for developing more practical and cost-effective toxicant sensing devices.</description><subject>B-rGO</subject><subject>MFCs cathode</subject><subject>ORR efficiency</subject><subject>SDBS toxicity sensing</subject><issn>0960-8524</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PwzAMhiMEgjH4CyhHLh35aJv0xof4kiZx4R6licMydc1IUgT_nkwDrlxsyX5tv34QuqBkQQltr9aL3oeYwawWjLB6QTmRkh-gGZWCV6wT7SGaka4llWxYfYJOU1oTQjgV7BidcCmklETMUL4NMYyVDVuwOIKdTMlvUW9XMAIOn94C1gnrEYNz3ngYMzY6r0Kp-xFvvImh93rAboIBGxiGhF2IuLgbwps3pZPLFuPzF7ZQ_GYfxjN05PSQ4Pwnz9Hrw_3r3VO1fHl8vrtZVobTJld1I5lwQEAYy0XXGOZYX3NOje6s6WxPenC6BeZkxxsum67u21Yyqa1lWvM5utyv3cbwPkHKauPTzqIeIUxJcdISLqgscY7avbS8k1IEp7bRb3T8UpSoHXC1Vr_A1Q642gMvgxc_N6Z-A_Zv7JdwEVzvBVAe_fAQVdpRLJh9LDSUDf6_G9-Cm5dS</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Lan, Ruisong</creator><creator>Liu, Lihua</creator><creator>Feng, Han</creator><creator>Chen, Bor-yann</creator><creator>Shi, Xiuding</creator><creator>Hong, Junming</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20240701</creationdate><title>Boron-doped reduced graphene oxide as an efficient cathode in microbial fuel cells for biological toxicity detection</title><author>Lan, Ruisong ; Liu, Lihua ; Feng, Han ; Chen, Bor-yann ; Shi, Xiuding ; Hong, Junming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-45827fe0e7cd3795c2f2b4331ca9dc9db0befa6e2f893538594b66828add2aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>B-rGO</topic><topic>MFCs cathode</topic><topic>ORR efficiency</topic><topic>SDBS toxicity sensing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lan, Ruisong</creatorcontrib><creatorcontrib>Liu, Lihua</creatorcontrib><creatorcontrib>Feng, Han</creatorcontrib><creatorcontrib>Chen, Bor-yann</creatorcontrib><creatorcontrib>Shi, Xiuding</creatorcontrib><creatorcontrib>Hong, Junming</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lan, Ruisong</au><au>Liu, Lihua</au><au>Feng, Han</au><au>Chen, Bor-yann</au><au>Shi, Xiuding</au><au>Hong, Junming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boron-doped reduced graphene oxide as an efficient cathode in microbial fuel cells for biological toxicity detection</atitle><jtitle>Bioresource technology</jtitle><addtitle>Bioresour Technol</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>403</volume><spage>130883</spage><epage>130883</epage><pages>130883-130883</pages><artnum>130883</artnum><issn>0960-8524</issn><eissn>1873-2976</eissn><abstract>•Boron doping brought more active sites and enhanced charge transfer.•B-rGO-2 improved ORR efficiency by 10 % due to enhanced oxygen permeability.•B-rGO-2-modified MFCs boosted the power density (411 mW m−2).•The voltage linearly correlated with SBDS concentration (R2 = 0.973). Electrodes with superior stability and sensitivity are highly desirable in advancing the toxicity detection efficiency of microbial fuel cells (MFCs). Herein, boron-doped reduced graphene oxide (B-rGO) was synthesized and utilized as an efficient cathode candidate in an MFCs system for sensitive sodium dodecylbenzene sulfonate (SDBS) detection. Boron doping introduces additional defects and improves the dispersibility and oxygen permeability, thereby enhancing the oxygen reduction reaction (ORR) efficiency. The B-rGO-based cathode has demonstrated significantly improved output voltage and power density, marking improvements of 75 % and 58 % over their undoped counterparts, respectively. Furthermore, it also exhibited remarkable linear sensitivity to SDBS concentrations across a broad range (0.2–15 mg/L). Notably, the cathode maintained excellent stability within the test range and showed significant reversibility for SDBS concentrations between 0.2 and 3 mg/L. The highly sensitive and stable B-rGO-based cathode is inspiring for developing more practical and cost-effective toxicant sensing devices.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>38788807</pmid><doi>10.1016/j.biortech.2024.130883</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0960-8524
ispartof Bioresource technology, 2024-07, Vol.403, p.130883-130883, Article 130883
issn 0960-8524
1873-2976
language eng
recordid cdi_proquest_miscellaneous_3060371860
source Elsevier ScienceDirect Journals
subjects B-rGO
MFCs cathode
ORR efficiency
SDBS toxicity sensing
title Boron-doped reduced graphene oxide as an efficient cathode in microbial fuel cells for biological toxicity detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A32%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boron-doped%20reduced%20graphene%20oxide%20as%20an%20efficient%20cathode%20in%20microbial%20fuel%20cells%20for%20biological%20toxicity%20detection&rft.jtitle=Bioresource%20technology&rft.au=Lan,%20Ruisong&rft.date=2024-07-01&rft.volume=403&rft.spage=130883&rft.epage=130883&rft.pages=130883-130883&rft.artnum=130883&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2024.130883&rft_dat=%3Cproquest_cross%3E3060371860%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3060371860&rft_id=info:pmid/38788807&rft_els_id=S0960852424005868&rfr_iscdi=true