Boron-doped reduced graphene oxide as an efficient cathode in microbial fuel cells for biological toxicity detection
•Boron doping brought more active sites and enhanced charge transfer.•B-rGO-2 improved ORR efficiency by 10 % due to enhanced oxygen permeability.•B-rGO-2-modified MFCs boosted the power density (411 mW m−2).•The voltage linearly correlated with SBDS concentration (R2 = 0.973). Electrodes with super...
Gespeichert in:
Veröffentlicht in: | Bioresource technology 2024-07, Vol.403, p.130883-130883, Article 130883 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | •Boron doping brought more active sites and enhanced charge transfer.•B-rGO-2 improved ORR efficiency by 10 % due to enhanced oxygen permeability.•B-rGO-2-modified MFCs boosted the power density (411 mW m−2).•The voltage linearly correlated with SBDS concentration (R2 = 0.973).
Electrodes with superior stability and sensitivity are highly desirable in advancing the toxicity detection efficiency of microbial fuel cells (MFCs). Herein, boron-doped reduced graphene oxide (B-rGO) was synthesized and utilized as an efficient cathode candidate in an MFCs system for sensitive sodium dodecylbenzene sulfonate (SDBS) detection. Boron doping introduces additional defects and improves the dispersibility and oxygen permeability, thereby enhancing the oxygen reduction reaction (ORR) efficiency. The B-rGO-based cathode has demonstrated significantly improved output voltage and power density, marking improvements of 75 % and 58 % over their undoped counterparts, respectively. Furthermore, it also exhibited remarkable linear sensitivity to SDBS concentrations across a broad range (0.2–15 mg/L). Notably, the cathode maintained excellent stability within the test range and showed significant reversibility for SDBS concentrations between 0.2 and 3 mg/L. The highly sensitive and stable B-rGO-based cathode is inspiring for developing more practical and cost-effective toxicant sensing devices. |
---|---|
ISSN: | 0960-8524 1873-2976 |
DOI: | 10.1016/j.biortech.2024.130883 |