Synthesis of 2D Gallium Sulfide with Ultraviolet Emission by MOCVD
Two‐dimensional (2D) materials exhibit the potential to transform semiconductor technology. Their rich compositional and stacking varieties allow tailoring materials’ properties toward device applications. Monolayer to multilayer gallium sulfide (GaS) with its ultraviolet band gap, which can be tune...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-09, Vol.20 (37), p.e2402155-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 37 |
container_start_page | e2402155 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 20 |
creator | Maßmeyer, Oliver Günkel, Robin Glowatzki, Johannes Klement, Philip Ojaghi Dogahe, Badrosadat Kachel, Stefan Renato Gruber, Felix Müller, Marius Fey, Melanie Schörmann, Jörg Belz, Jürgen Beyer, Andreas Gottfried, J. Michael Chatterjee, Sangam Volz, Kerstin |
description | Two‐dimensional (2D) materials exhibit the potential to transform semiconductor technology. Their rich compositional and stacking varieties allow tailoring materials’ properties toward device applications. Monolayer to multilayer gallium sulfide (GaS) with its ultraviolet band gap, which can be tuned by varying the layer number, holds promise for solar‐blind photodiodes and light‐emitting diodes as applications. However, achieving commercial viability requires wafer‐scale integration, contrasting with established, limited methods such as mechanical exfoliation. Here the one‐step synthesis of 2D GaS is introduced via metal–organic chemical vapor deposition on sapphire substrates. The pulsed‐mode deposition of industry‐standard precursors promotes 2D growth by inhibiting the vapor phase and on‐surface pre‐reactions. The interface chemistry with the growth of a Ga adlayer that results in an epitaxial relationship is revealed. Probing structure and composition validate thin‐film quality and 2D nature with the possibility to control the thickness by the number of GaS pulses. The results highlight the adaptability of established growth facilities for producing atomically thin to multilayered 2D semiconductor materials, paving the way for practical applications.
Two‐dimensional gallium sulfide (2D GaS) emitting in the ultraviolet to visible spectral range is synthesized via metal–organic chemical vapor deposition. Pulsed deposition of industry‐standard precursors promotes 2D growth. The interface chemistry with the growth of a Ga adlayer as well as strain relation upon the growth of thicker layers resulting in an epitaxial relationship is revealed. Thickness control is enabled by tuning the number of GaS pulses. |
doi_str_mv | 10.1002/smll.202402155 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3060371211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3111035051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3525-c6150bd2bc9e0fc373d89dff145608e5f5e75b74aacd6b7153c7f9ed4fdb50533</originalsourceid><addsrcrecordid>eNqFkE1PAjEQQBujEUSvHk0TL14WZ9rtfhwVEE0gHBCvzX60oaTL4nZXwr93CYiJF08zhzcvk0fILUIfAdijK6ztM2A-MBTijHQxQO4FEYvPTztCh1w5twLgyPzwknR4FMYCALvkeb5b10vljKOlpmxIx4m1pinovLHa5IpuTb2kC1tXyZcprarpqDDOmXJN0x2dzgYfw2tyoRPr1M1x9sjiZfQ-ePUms_Hb4GniZVww4WUBCkhzlmaxAp3xkOdRnGuNvgggUkILFYo09JMky4M0RMGzUMcq93WeChCc98jDwbupys9GuVq2n2TK2mStysZJDgHwEBlii97_QVdlU63b7yRHROCtcE_1D1RWlc5VSstNZYqk2kkEua8r93XlqW57cHfUNmmh8hP-k7MF4gOwNVbt_tHJ-XQy-ZV_A_tOhL8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3111035051</pqid></control><display><type>article</type><title>Synthesis of 2D Gallium Sulfide with Ultraviolet Emission by MOCVD</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Maßmeyer, Oliver ; Günkel, Robin ; Glowatzki, Johannes ; Klement, Philip ; Ojaghi Dogahe, Badrosadat ; Kachel, Stefan Renato ; Gruber, Felix ; Müller, Marius ; Fey, Melanie ; Schörmann, Jörg ; Belz, Jürgen ; Beyer, Andreas ; Gottfried, J. Michael ; Chatterjee, Sangam ; Volz, Kerstin</creator><creatorcontrib>Maßmeyer, Oliver ; Günkel, Robin ; Glowatzki, Johannes ; Klement, Philip ; Ojaghi Dogahe, Badrosadat ; Kachel, Stefan Renato ; Gruber, Felix ; Müller, Marius ; Fey, Melanie ; Schörmann, Jörg ; Belz, Jürgen ; Beyer, Andreas ; Gottfried, J. Michael ; Chatterjee, Sangam ; Volz, Kerstin</creatorcontrib><description>Two‐dimensional (2D) materials exhibit the potential to transform semiconductor technology. Their rich compositional and stacking varieties allow tailoring materials’ properties toward device applications. Monolayer to multilayer gallium sulfide (GaS) with its ultraviolet band gap, which can be tuned by varying the layer number, holds promise for solar‐blind photodiodes and light‐emitting diodes as applications. However, achieving commercial viability requires wafer‐scale integration, contrasting with established, limited methods such as mechanical exfoliation. Here the one‐step synthesis of 2D GaS is introduced via metal–organic chemical vapor deposition on sapphire substrates. The pulsed‐mode deposition of industry‐standard precursors promotes 2D growth by inhibiting the vapor phase and on‐surface pre‐reactions. The interface chemistry with the growth of a Ga adlayer that results in an epitaxial relationship is revealed. Probing structure and composition validate thin‐film quality and 2D nature with the possibility to control the thickness by the number of GaS pulses. The results highlight the adaptability of established growth facilities for producing atomically thin to multilayered 2D semiconductor materials, paving the way for practical applications.
Two‐dimensional gallium sulfide (2D GaS) emitting in the ultraviolet to visible spectral range is synthesized via metal–organic chemical vapor deposition. Pulsed deposition of industry‐standard precursors promotes 2D growth. The interface chemistry with the growth of a Ga adlayer as well as strain relation upon the growth of thicker layers resulting in an epitaxial relationship is revealed. Thickness control is enabled by tuning the number of GaS pulses.</description><identifier>ISSN: 1613-6810</identifier><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202402155</identifier><identifier>PMID: 38795001</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>2D materials ; Chemical synthesis ; Epitaxial growth ; Gallium ; gallium sulfide ; Light emitting diodes ; Metalorganic chemical vapor deposition ; metal–organic chemical vapor deposition ; Multilayers ; Organic chemicals ; Organic chemistry ; Photodiodes ; Sapphire ; Semiconductor materials ; Substrate inhibition ; Thickness ; Thin films ; Two dimensional materials ; Ultraviolet emission ; UV emission ; Vapor phases ; wafer scale</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-09, Vol.20 (37), p.e2402155-n/a</ispartof><rights>2024 The Authors. Advanced Materials published by Wiley‐VCH GmbH</rights><rights>2024 The Authors. Advanced Materials published by Wiley‐VCH GmbH.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3525-c6150bd2bc9e0fc373d89dff145608e5f5e75b74aacd6b7153c7f9ed4fdb50533</cites><orcidid>0000-0002-7736-7025 ; 0000-0001-7044-713X ; 0000-0001-5579-2568 ; 0000-0001-6101-5706 ; 0000-0002-0237-5880 ; 0000-0002-4456-5439 ; 0009-0009-8970-0735 ; 0000-0001-7244-2201 ; 0000-0001-6533-0631 ; 0000-0003-0323-2440 ; 0000-0002-0467-5721</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202402155$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202402155$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38795001$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maßmeyer, Oliver</creatorcontrib><creatorcontrib>Günkel, Robin</creatorcontrib><creatorcontrib>Glowatzki, Johannes</creatorcontrib><creatorcontrib>Klement, Philip</creatorcontrib><creatorcontrib>Ojaghi Dogahe, Badrosadat</creatorcontrib><creatorcontrib>Kachel, Stefan Renato</creatorcontrib><creatorcontrib>Gruber, Felix</creatorcontrib><creatorcontrib>Müller, Marius</creatorcontrib><creatorcontrib>Fey, Melanie</creatorcontrib><creatorcontrib>Schörmann, Jörg</creatorcontrib><creatorcontrib>Belz, Jürgen</creatorcontrib><creatorcontrib>Beyer, Andreas</creatorcontrib><creatorcontrib>Gottfried, J. Michael</creatorcontrib><creatorcontrib>Chatterjee, Sangam</creatorcontrib><creatorcontrib>Volz, Kerstin</creatorcontrib><title>Synthesis of 2D Gallium Sulfide with Ultraviolet Emission by MOCVD</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Two‐dimensional (2D) materials exhibit the potential to transform semiconductor technology. Their rich compositional and stacking varieties allow tailoring materials’ properties toward device applications. Monolayer to multilayer gallium sulfide (GaS) with its ultraviolet band gap, which can be tuned by varying the layer number, holds promise for solar‐blind photodiodes and light‐emitting diodes as applications. However, achieving commercial viability requires wafer‐scale integration, contrasting with established, limited methods such as mechanical exfoliation. Here the one‐step synthesis of 2D GaS is introduced via metal–organic chemical vapor deposition on sapphire substrates. The pulsed‐mode deposition of industry‐standard precursors promotes 2D growth by inhibiting the vapor phase and on‐surface pre‐reactions. The interface chemistry with the growth of a Ga adlayer that results in an epitaxial relationship is revealed. Probing structure and composition validate thin‐film quality and 2D nature with the possibility to control the thickness by the number of GaS pulses. The results highlight the adaptability of established growth facilities for producing atomically thin to multilayered 2D semiconductor materials, paving the way for practical applications.
Two‐dimensional gallium sulfide (2D GaS) emitting in the ultraviolet to visible spectral range is synthesized via metal–organic chemical vapor deposition. Pulsed deposition of industry‐standard precursors promotes 2D growth. The interface chemistry with the growth of a Ga adlayer as well as strain relation upon the growth of thicker layers resulting in an epitaxial relationship is revealed. Thickness control is enabled by tuning the number of GaS pulses.</description><subject>2D materials</subject><subject>Chemical synthesis</subject><subject>Epitaxial growth</subject><subject>Gallium</subject><subject>gallium sulfide</subject><subject>Light emitting diodes</subject><subject>Metalorganic chemical vapor deposition</subject><subject>metal–organic chemical vapor deposition</subject><subject>Multilayers</subject><subject>Organic chemicals</subject><subject>Organic chemistry</subject><subject>Photodiodes</subject><subject>Sapphire</subject><subject>Semiconductor materials</subject><subject>Substrate inhibition</subject><subject>Thickness</subject><subject>Thin films</subject><subject>Two dimensional materials</subject><subject>Ultraviolet emission</subject><subject>UV emission</subject><subject>Vapor phases</subject><subject>wafer scale</subject><issn>1613-6810</issn><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkE1PAjEQQBujEUSvHk0TL14WZ9rtfhwVEE0gHBCvzX60oaTL4nZXwr93CYiJF08zhzcvk0fILUIfAdijK6ztM2A-MBTijHQxQO4FEYvPTztCh1w5twLgyPzwknR4FMYCALvkeb5b10vljKOlpmxIx4m1pinovLHa5IpuTb2kC1tXyZcprarpqDDOmXJN0x2dzgYfw2tyoRPr1M1x9sjiZfQ-ePUms_Hb4GniZVww4WUBCkhzlmaxAp3xkOdRnGuNvgggUkILFYo09JMky4M0RMGzUMcq93WeChCc98jDwbupys9GuVq2n2TK2mStysZJDgHwEBlii97_QVdlU63b7yRHROCtcE_1D1RWlc5VSstNZYqk2kkEua8r93XlqW57cHfUNmmh8hP-k7MF4gOwNVbt_tHJ-XQy-ZV_A_tOhL8</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Maßmeyer, Oliver</creator><creator>Günkel, Robin</creator><creator>Glowatzki, Johannes</creator><creator>Klement, Philip</creator><creator>Ojaghi Dogahe, Badrosadat</creator><creator>Kachel, Stefan Renato</creator><creator>Gruber, Felix</creator><creator>Müller, Marius</creator><creator>Fey, Melanie</creator><creator>Schörmann, Jörg</creator><creator>Belz, Jürgen</creator><creator>Beyer, Andreas</creator><creator>Gottfried, J. Michael</creator><creator>Chatterjee, Sangam</creator><creator>Volz, Kerstin</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7736-7025</orcidid><orcidid>https://orcid.org/0000-0001-7044-713X</orcidid><orcidid>https://orcid.org/0000-0001-5579-2568</orcidid><orcidid>https://orcid.org/0000-0001-6101-5706</orcidid><orcidid>https://orcid.org/0000-0002-0237-5880</orcidid><orcidid>https://orcid.org/0000-0002-4456-5439</orcidid><orcidid>https://orcid.org/0009-0009-8970-0735</orcidid><orcidid>https://orcid.org/0000-0001-7244-2201</orcidid><orcidid>https://orcid.org/0000-0001-6533-0631</orcidid><orcidid>https://orcid.org/0000-0003-0323-2440</orcidid><orcidid>https://orcid.org/0000-0002-0467-5721</orcidid></search><sort><creationdate>20240901</creationdate><title>Synthesis of 2D Gallium Sulfide with Ultraviolet Emission by MOCVD</title><author>Maßmeyer, Oliver ; Günkel, Robin ; Glowatzki, Johannes ; Klement, Philip ; Ojaghi Dogahe, Badrosadat ; Kachel, Stefan Renato ; Gruber, Felix ; Müller, Marius ; Fey, Melanie ; Schörmann, Jörg ; Belz, Jürgen ; Beyer, Andreas ; Gottfried, J. Michael ; Chatterjee, Sangam ; Volz, Kerstin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3525-c6150bd2bc9e0fc373d89dff145608e5f5e75b74aacd6b7153c7f9ed4fdb50533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>2D materials</topic><topic>Chemical synthesis</topic><topic>Epitaxial growth</topic><topic>Gallium</topic><topic>gallium sulfide</topic><topic>Light emitting diodes</topic><topic>Metalorganic chemical vapor deposition</topic><topic>metal–organic chemical vapor deposition</topic><topic>Multilayers</topic><topic>Organic chemicals</topic><topic>Organic chemistry</topic><topic>Photodiodes</topic><topic>Sapphire</topic><topic>Semiconductor materials</topic><topic>Substrate inhibition</topic><topic>Thickness</topic><topic>Thin films</topic><topic>Two dimensional materials</topic><topic>Ultraviolet emission</topic><topic>UV emission</topic><topic>Vapor phases</topic><topic>wafer scale</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maßmeyer, Oliver</creatorcontrib><creatorcontrib>Günkel, Robin</creatorcontrib><creatorcontrib>Glowatzki, Johannes</creatorcontrib><creatorcontrib>Klement, Philip</creatorcontrib><creatorcontrib>Ojaghi Dogahe, Badrosadat</creatorcontrib><creatorcontrib>Kachel, Stefan Renato</creatorcontrib><creatorcontrib>Gruber, Felix</creatorcontrib><creatorcontrib>Müller, Marius</creatorcontrib><creatorcontrib>Fey, Melanie</creatorcontrib><creatorcontrib>Schörmann, Jörg</creatorcontrib><creatorcontrib>Belz, Jürgen</creatorcontrib><creatorcontrib>Beyer, Andreas</creatorcontrib><creatorcontrib>Gottfried, J. Michael</creatorcontrib><creatorcontrib>Chatterjee, Sangam</creatorcontrib><creatorcontrib>Volz, Kerstin</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maßmeyer, Oliver</au><au>Günkel, Robin</au><au>Glowatzki, Johannes</au><au>Klement, Philip</au><au>Ojaghi Dogahe, Badrosadat</au><au>Kachel, Stefan Renato</au><au>Gruber, Felix</au><au>Müller, Marius</au><au>Fey, Melanie</au><au>Schörmann, Jörg</au><au>Belz, Jürgen</au><au>Beyer, Andreas</au><au>Gottfried, J. Michael</au><au>Chatterjee, Sangam</au><au>Volz, Kerstin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of 2D Gallium Sulfide with Ultraviolet Emission by MOCVD</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-09-01</date><risdate>2024</risdate><volume>20</volume><issue>37</issue><spage>e2402155</spage><epage>n/a</epage><pages>e2402155-n/a</pages><issn>1613-6810</issn><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>Two‐dimensional (2D) materials exhibit the potential to transform semiconductor technology. Their rich compositional and stacking varieties allow tailoring materials’ properties toward device applications. Monolayer to multilayer gallium sulfide (GaS) with its ultraviolet band gap, which can be tuned by varying the layer number, holds promise for solar‐blind photodiodes and light‐emitting diodes as applications. However, achieving commercial viability requires wafer‐scale integration, contrasting with established, limited methods such as mechanical exfoliation. Here the one‐step synthesis of 2D GaS is introduced via metal–organic chemical vapor deposition on sapphire substrates. The pulsed‐mode deposition of industry‐standard precursors promotes 2D growth by inhibiting the vapor phase and on‐surface pre‐reactions. The interface chemistry with the growth of a Ga adlayer that results in an epitaxial relationship is revealed. Probing structure and composition validate thin‐film quality and 2D nature with the possibility to control the thickness by the number of GaS pulses. The results highlight the adaptability of established growth facilities for producing atomically thin to multilayered 2D semiconductor materials, paving the way for practical applications.
Two‐dimensional gallium sulfide (2D GaS) emitting in the ultraviolet to visible spectral range is synthesized via metal–organic chemical vapor deposition. Pulsed deposition of industry‐standard precursors promotes 2D growth. The interface chemistry with the growth of a Ga adlayer as well as strain relation upon the growth of thicker layers resulting in an epitaxial relationship is revealed. Thickness control is enabled by tuning the number of GaS pulses.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38795001</pmid><doi>10.1002/smll.202402155</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7736-7025</orcidid><orcidid>https://orcid.org/0000-0001-7044-713X</orcidid><orcidid>https://orcid.org/0000-0001-5579-2568</orcidid><orcidid>https://orcid.org/0000-0001-6101-5706</orcidid><orcidid>https://orcid.org/0000-0002-0237-5880</orcidid><orcidid>https://orcid.org/0000-0002-4456-5439</orcidid><orcidid>https://orcid.org/0009-0009-8970-0735</orcidid><orcidid>https://orcid.org/0000-0001-7244-2201</orcidid><orcidid>https://orcid.org/0000-0001-6533-0631</orcidid><orcidid>https://orcid.org/0000-0003-0323-2440</orcidid><orcidid>https://orcid.org/0000-0002-0467-5721</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2024-09, Vol.20 (37), p.e2402155-n/a |
issn | 1613-6810 1613-6829 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_3060371211 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | 2D materials Chemical synthesis Epitaxial growth Gallium gallium sulfide Light emitting diodes Metalorganic chemical vapor deposition metal–organic chemical vapor deposition Multilayers Organic chemicals Organic chemistry Photodiodes Sapphire Semiconductor materials Substrate inhibition Thickness Thin films Two dimensional materials Ultraviolet emission UV emission Vapor phases wafer scale |
title | Synthesis of 2D Gallium Sulfide with Ultraviolet Emission by MOCVD |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A25%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%202D%20Gallium%20Sulfide%20with%20Ultraviolet%20Emission%20by%20MOCVD&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Ma%C3%9Fmeyer,%20Oliver&rft.date=2024-09-01&rft.volume=20&rft.issue=37&rft.spage=e2402155&rft.epage=n/a&rft.pages=e2402155-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202402155&rft_dat=%3Cproquest_cross%3E3111035051%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3111035051&rft_id=info:pmid/38795001&rfr_iscdi=true |