Pathways and contributions of sulfate reducing-bacteria to arsenic cycling in landfills

Sulfate-reducing bacteria (SRB) are generally found in sanitary landfills and play a role in sulfur (S) and metal/metalloid geochemical cycling. In this study, we investigated the influence of SRB on arsenic (As) metabolic pathways in refuse-derived cultures. The results indicated that SRB promote A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hazardous materials 2024-07, Vol.473, p.134582-134582, Article 134582
Hauptverfasser: Hu, Lifang, Huang, Feng, Qian, Yating, Ding, Tao, Yang, Yuzhou, Shen, Dongsheng, Long, Yuyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sulfate-reducing bacteria (SRB) are generally found in sanitary landfills and play a role in sulfur (S) and metal/metalloid geochemical cycling. In this study, we investigated the influence of SRB on arsenic (As) metabolic pathways in refuse-derived cultures. The results indicated that SRB promote As(III) methylation and are beneficial for controlling As levels. Heterotrophic and autotrophic SRB showed significant differences during As cycling. In heterotrophic SRB cultures, the As methylation rate increased with As(III) concentration in the medium and reached a peak (85.1%) in cultures containing 25 mg L−1 As(III). Moreover, 4.0–12.6% of SO42− was reduced to S2−, which then reacted with As(III) to form realgar (AsS). In contrast, autotrophic SRB oxidized As(III) to less toxic As(V) under anaerobic conditions. Heterotrophic arsM-harboring SRB, such as Desulfosporosinus, Desulfocurvibacter, and Desulfotomaculum, express As-related genes and are considered key genera for As methylation in landfills. Thiobacillus are the main autotrophic SRB in landfills and can derive energy by oxidizing sulfur compounds and metal(loid)s. These results suggest that different types of SRB drive As methylation, redox reaction, and mineral formation in landfills. These study findings have implications for the management of As pollutants in landfills and other contaminated environments. [Display omitted] •Desulfosporosinus, Desulfallas, etc. were designated as representative SRB for As methylation;•Heterotrophic SRB have a role in both As methylation and forming As-S minerals;•Autotrophic SRB stimulated to oxidize As(III) to less toxic As(V).
ISSN:0304-3894
1873-3336
DOI:10.1016/j.jhazmat.2024.134582