Simulation of Hydrogen Adsorption in Hierarchical Silicalite: Role of Electrostatics and Surface Chemistry

Adsorption in nanoporous materials is one strategy that can be used to store hydrogen at conditions of temperature and pressure that are economically viable. Adsorption capacity of nanoporous materials depends on surface area which can be enhanced by incorporating a hierarchical pore structure. We r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemphyschem 2024-09, Vol.25 (17), p.e202400360-n/a
Hauptverfasser: Gautam, S., Cole, D. R., Dudás, Z. I., Dhiman, I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Adsorption in nanoporous materials is one strategy that can be used to store hydrogen at conditions of temperature and pressure that are economically viable. Adsorption capacity of nanoporous materials depends on surface area which can be enhanced by incorporating a hierarchical pore structure. We report grand canonical Monte Carlo (GCMC) simulation results on the adsorption of hydrogen in hierarchical models of silicalite that incorporate 4 nm wide mesopores in addition to the 0.5 nm wide micropores at 298 K, using different force fields to model hydrogen. Our results suggest that incorporating mesopores in silicalite can enhance adsorption by at least 20 % if electrostatic interactions are not included and up to 100 % otherwise. Incorporating electrostatic interactions results in higher adsorption by close to 100 % at lower pressures for hierarchical silicalite whereas for unmodified silicalite, it is less significant at all pressures. Hydroxylating the mesopore surface in hierarchical silicalite results in an enhancement in adsorption at pressures below 1 atm and suppression by up to 20 % at higher pressures. Temperature dependence at selected pressures exhibits expected decrease in adsorption amounts at higher temperatures. These findings can be useful in the engineering, selection, and optimization of nanoporous materials for hydrogen storage. Incorporating mesopores in microporous silicalite enhances its hydrogen adsorption capacity
ISSN:1439-4235
1439-7641
1439-7641
DOI:10.1002/cphc.202400360