Effect of Europium and Gadolinium Alloying Elements on the Tribological Response of Low Hydrogen Content Amorphous Carbon
Dopants and alloying elements are commonly introduced in amorphous carbon (a-C) materials to tailor their mechanical and tribological properties. While most published studies have focused on doping and alloying a-C coatings with metals or metalloids, doping a-C films with rare-earth elements has onl...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2024-05, Vol.16 (22), p.29314-29323 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Dopants and alloying elements are commonly introduced in amorphous carbon (a-C) materials to tailor their mechanical and tribological properties. While most published studies have focused on doping and alloying a-C coatings with metals or metalloids, doping a-C films with rare-earth elements has only recently been explored. Notably, our understanding of the shear-induced structural changes occurring in rare-earth-element-containing a-C films is still elusive, even in the absence of any liquid lubricants. Here, the friction response of Eu- and Gd-containing a-C films with low hydrogen content deposited by HiPIMS on silicon was evaluated in open air and at room temperature. The load-dependent friction measurements indicated that the introduction of Gd ((2.3 ± 0.1) at.%) and Eu ((2.4 ± 0.1) at.%) into the a-C matrix results in a significant reduction of the shear strength of the sliding interfaces ((41 ± 2) MPa for a-C, (16 ± 1) MPa for a-C:Gd2.3 at.%, and (11 ± 2) MPa for a-C:Eu2.4 at.%). NEXAFS spectromicroscopy experiments provided evidence that no stress-assisted sp3-to-sp2 rehybridization of carbon atoms was induced by the sliding process in the near-surface region of undoped a-C, while the amount of sp2-bonded carbon progressively increased in a-C:Gd2.3 at.% and a-C:Eu2.4 at.% upon increasing the applied normal load in tribological tests. The formation of an sp2-bonded carbon-rich surface layer in a-C:Gd2.3 at.% and a-C:Eu2.4 at.% films was not only proposed to be the origin for the reduced duration of the running-in period in tribological test, but was also postulated to induce shear localization within the sp2-carbon-rich layer and transfer film formation on the countersurface, thus decreasing the interfacial shear strength. These findings open the path for the use of Gd- and Eu-containing a-C even under critical conditions for nearly hydrogen-free a-C films (i.e., humid air). |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.4c00677 |