Expanding horizons in reinforcement learning for curious exploration and creative planning

Curiosity and creativity are expressions of the trade-off between leveraging that with which we are familiar or seeking out novelty. Through the computational lens of reinforcement learning, we describe how formulating the value of information seeking and generation via their complementary effects o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Behavioral and brain sciences 2024-05, Vol.47, p.e118-e118, Article e118
Hauptverfasser: Zhou, Dale, Bornstein, Aaron M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Curiosity and creativity are expressions of the trade-off between leveraging that with which we are familiar or seeking out novelty. Through the computational lens of reinforcement learning, we describe how formulating the value of information seeking and generation via their complementary effects on planning horizons formally captures a range of solutions to striking this balance.
ISSN:0140-525X
1469-1825
DOI:10.1017/S0140525X23003394