Sr-Incorporated Bioactive Glass Remodels the Immunological Microenvironment by Enhancing the Mitochondrial Function of Macrophage via the PI3K/AKT/mTOR Signaling Pathway

The repair of critical-sized bone defects continues to pose a challenge in clinics. Strontium (Sr), recognized for its function in bone metabolism regulation, has shown potential in bone repair. However, the underlying mechanism through which Sr2+ guided favorable osteogenesis by modulating macropha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS biomaterials science & engineering 2024-06, Vol.10 (6), p.3923-3934
Hauptverfasser: Qiu, Huanhuan, Xiong, Huacui, Zheng, Jiafu, Peng, Yuqi, Wang, Chunhui, Zhao, Fujian, Chen, Ke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The repair of critical-sized bone defects continues to pose a challenge in clinics. Strontium (Sr), recognized for its function in bone metabolism regulation, has shown potential in bone repair. However, the underlying mechanism through which Sr2+ guided favorable osteogenesis by modulating macrophages remains unclear, limiting their application in the design of bone biomaterials. Herein, Sr-incorporated bioactive glass (SrBG) was synthesized for further investigation. The release of Sr ions enhanced the immunomodulatory properties and osteogenic potential by modulating the polarization of macrophages toward the M2 phenotype. In vivo, a 3D-printed SrBG scaffold was fabricated and showed consistently improved bone regeneration by creating a prohealing immunological microenvironment. RNA sequencing was performed to explore the underlying mechanisms. It was found that Sr ions might enhance the mitochondrial function of macrophage by activating PI3K/AKT/mTOR signaling, thereby favoring osteogenesis. Our findings demonstrate the relationship between the immunomodulatory role of Sr ions and the mitochondrial function of macrophages. By focusing on the mitochondrial function of macrophages, Sr2+-mediated immunomodulation sheds light on the future design of biomaterials for tissue regenerative engineering.
ISSN:2373-9878
2373-9878
DOI:10.1021/acsbiomaterials.4c00228