Preparation of Eudragit S100-pullulan/hydroxypropyl-β-cyclodextrin complex-Eudragit S100 multilayer nanofiber film for resveratrol colon delivery
Cyclodextrin-based electrospun nanofibers are promising for encapsulating and preserving unstable compounds, but quick dissolution of certain nanofibers hinders their delivery application. In this study, hydroxypropyl-β-cyclodextrin (HPβCD) was used as an effective carrier of resveratrol (RSV) to ob...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2024-06, Vol.270 (Pt 2), p.132388-132388, Article 132388 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cyclodextrin-based electrospun nanofibers are promising for encapsulating and preserving unstable compounds, but quick dissolution of certain nanofibers hinders their delivery application. In this study, hydroxypropyl-β-cyclodextrin (HPβCD) was used as an effective carrier of resveratrol (RSV) to obtain the RSV/HPβCD inclusion complex (HPIC), which was then incorporated into pullulan nanofibers. For enhancement of RSV release toward colon target, multilayer structure with a pullulan/HPIC film sandwiched between two layers of hydrophobic Eudragit S100 (ES100) nanofibers was employed. The relationship between the superiority of the ES100-pullulan/HPIC-ES100 film and its multilayer structure was verified. The intimate interactions of hydrogen bonds between two adjacent layers enhanced thermal stability, and the hydrophobic outer layers improved water contact resistance. According to release results, multilayer films also showed excellent colon-targeted delivery property and approximately 78.58 % of RSV was observed to release in colon stage. In terms of release mechanism, complex mechanism best described RSV colonic release. Additionally, ES100-pullulan/HPIC-ES100 multilayer films performed higher encapsulation efficiency when compared to the structures without HPIC, which further increased the antioxidant activity and total release amount of RSV. These results suggest a promising strategy for designing safe colonic delivery systems based on multilayer and HPIC structures with superior preservation for RSV.
•The Eudragit S100-pullulan multilayer film was prepared by sequential electrospinning.•Multilayer and HPβCD structures increased colonic release of resveratrol.•HPβCD improved encapsulation efficiency of resveratrol and antioxidant activity.•Colonic resveratrol release for multilayer films was governed by complex mechanism.•Resveratrol encapsulated in multilayer nanofibers had higher thermal stability. |
---|---|
ISSN: | 0141-8130 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2024.132388 |