Eco-friendly multifunctional coating for polyester-cotton blended fabrics with superior flame retardancy and antibacterial properties
Since the fire hazards of polyester-cotton blended (PTCO) fabrics and the hidden dangers of bacterial infection concerns caused by the contained cotton fiber, the design of flame retardant and antibacterial PTCO fabrics has received considerable attention. In this work, flame-retardant PTCO fabrics...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2024-06, Vol.271 (Pt 2), p.132407, Article 132407 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Since the fire hazards of polyester-cotton blended (PTCO) fabrics and the hidden dangers of bacterial infection concerns caused by the contained cotton fiber, the design of flame retardant and antibacterial PTCO fabrics has received considerable attention. In this work, flame-retardant PTCO fabrics with satisfactory antibacterial properties were fabricated via a convenient and eco-friendly impregnation treatment involving guanidine phosphate (GP) and polyethylenimine (PEI). The prepared PTCO fabrics demonstrated excellent flame retardancy with a high limiting oxygen index value of 30.5 % and self-extinguishing capability, the damaged length was only 34 mm in the vertical flammability test. Furthermore, the peak heat release rate and the total heat release of coated PTCO fabrics were reduced significantly by 49 % and 38 %, respectively, indicating a substantial enhancement in fire safety. According to the analysis of the char residues and volatiles, GP presented great catalytic carbonization property, and PEI assisted the formation of the dense and stable carbon layer. The stable carbon layer effectively restricted mass and oxygen transfer between the PTCO fabrics and the environment. In addition, the introduction of PEI also produced more nonflammable gases to enhance the flame retardancy of the PTCO fabrics. Importantly, the GP/PEI coating barely deteriorate the physical and mechanical properties of the PTCO fabrics. The antibacterial rate of the GP/PEI-coated PTCO fabrics against Escherichia coli and Staphylococcus aureus was 99.99 %, similar to that of GP-coated fabrics, indicating the efficacy antibacterial properties of GP, and the addition of PEI did not compromise the antibacterial properties of GP. This work offers an efficient and simple approach to producing multifunctional PTCO fabrics with excellent flame retardancy and antibacterial properties, which are hopeful to expand the promising application of PTCO fabrics.
•Guanidine phosphate and polyethylenimine coating were constructed on polyester-cotton blend fabrics.•The coating imparts efficient flame retardancy and antibacterial properties to polyester-cotton blend fabrics•The LOI of coated fabric reached 30.5 % and the “scaffolding effect” was eliminated.•The coated fabrics exhibited flame-retardant activities in both condensed and gaseous phases during combustion.•The antibacterial rates of the coated PTCO fabrics against E. coli and S. aureus were 99.99 %. |
---|---|
ISSN: | 0141-8130 1879-0003 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2024.132407 |