Glycyrrhetinic acid loaded in milk-derived extracellular vesicles for inhalation therapy of idiopathic pulmonary fibrosis
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and life-threatening lung disease for which treatment options are limited. Glycyrrhetinic acid (GA) is a triterpenoid with multiple biological effects, such as anti-inflammatory and anti-fibrotic properties. Herein, inhalable milk-derive...
Gespeichert in:
Veröffentlicht in: | Journal of controlled release 2024-06, Vol.370, p.811-820 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and life-threatening lung disease for which treatment options are limited. Glycyrrhetinic acid (GA) is a triterpenoid with multiple biological effects, such as anti-inflammatory and anti-fibrotic properties. Herein, inhalable milk-derived extracellular vesicles (mEVs) encapsulating GA (mEVs@GA) were screened and evaluated for IPF treatment. The results indicated that the loading efficiency of GA in mEVs@GA was 8.65%. Therapeutic effects of inhalable mEVs@GA were investigated in vitro and in vivo. The mEVs@GA demonstrated superior anti-inflammatory effects on LPS-stimulated MHS cells. Furthermore, repeated noninvasive inhalation delivery of mEVs@GA in bleomycin-induced IPF mice could decrease the levels of transforming growth factors β1 (TGF-β1), Smad3 and inflammatory cytokines IL-6, IL-1β and TNF-α. The mEVs@GA effectively diminished the development of fibrosis and improved pulmonary function in the IPF mice model at a quarter of the dose compared with the pirfenidone oral administration group. Additionally, compared to pirfenidone-loaded mEVs, mEVs@GA demonstrated superior efficacy at the same drug concentration in the pharmacodynamic study. Overall, inhaled mEVs@GA have the potential to serve as an effective therapeutic option in the treatment of IPF.
Glycyrrhetinic acid (GA)-loaded milk-derived extracellular vesicles (mEVs) were successfully constructed and inhaled by bleomycin-induced mice, resulting in successful improvement of idiopathic pulmonary fibrosis. [Display omitted] |
---|---|
ISSN: | 0168-3659 1873-4995 |
DOI: | 10.1016/j.jconrel.2024.05.024 |