Radiomics to Detect Inflammation and Fibrosis on Magnetic Resonance Enterography in Stricturing Crohn’s Disease
Abstract Background and Aims Non-invasive cross-sectional imaging via magnetic resonance enterography [MRE] offers excellent accuracy for the diagnosis of stricturing complications in Crohn’s disease [CD] but is limited in determining the degrees of fibrosis and inflammation within a stricture. We d...
Gespeichert in:
Veröffentlicht in: | Journal of Crohn's and colitis 2024-05, Vol.18 (10), p.1660-1671 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Background and Aims
Non-invasive cross-sectional imaging via magnetic resonance enterography [MRE] offers excellent accuracy for the diagnosis of stricturing complications in Crohn’s disease [CD] but is limited in determining the degrees of fibrosis and inflammation within a stricture. We developed and validated a radiomics-based machine-learning model for separately characterizing the degree of histopathological inflammation and fibrosis in CD strictures and compared it to centrally read visual radiologist scoring of MRE.
Methods
This single-centre, cross-sectional study included 51 CD patients [n = 34 for discovery; n = 17 for validation] with terminal ileal strictures confirmed on diagnostic MRE within 15 weeks of resection. Histopathological specimens were scored for inflammation and fibrosis and spatially linked with corresponding pre-surgical MRE sequences. Annotated stricture regions on MRE were scored visually by radiologists as well as underwent 3D radiomics-based machine learning analysis; both were evaluated against histopathology.
Results
Two distinct sets of radiomic features capturing textural heterogeneity within strictures were linked with each of severe inflammation or severe fibrosis across both the discovery (area under the curve [AUC = 0.69, 0.83] and validation [AUC = 0.67, 0.78] cohorts. Radiologist visual scoring had an AUC = 0.67 for identifying severe inflammation and AUC = 0.35 for severe fibrosis. Use of combined radiomics and radiologist scoring robustly augmented identification of severe inflammation [AUC = 0.79] and modestly improved assessment of severe fibrosis [AUC = 0.79 for severe fibrosis] over individual approaches.
Conclusions
Radiomic features of CD strictures on MRE can accurately identify severe histopathological inflammation and severe histopathological fibrosis, as well as augment performance of the radiologist visual scoring in stricture characterization. |
---|---|
ISSN: | 1873-9946 1876-4479 1876-4479 |
DOI: | 10.1093/ecco-jcc/jjae073 |