Combined Machine Learning and High-Throughput Calculations Predict Heyd–Scuseria–Ernzerhof Band Gap of 2D Materials and Potential MoSi2N4 Heterostructures

We present a novel target-driven methodology devised to predict the Heyd–Scuseria–Ernzerhof (HSE) band gap of two-dimensional (2D) materials leveraging the comprehensive C2DB database. This innovative approach integrates machine learning and density functional theory (DFT) calculations to predict th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2024-05, Vol.15 (20), p.5413-5419
Hauptverfasser: Zhang, Weibin, Guo, Jie, Lv, Xiankui, Zhang, Fuchun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a novel target-driven methodology devised to predict the Heyd–Scuseria–Ernzerhof (HSE) band gap of two-dimensional (2D) materials leveraging the comprehensive C2DB database. This innovative approach integrates machine learning and density functional theory (DFT) calculations to predict the HSE band gap, conduction band minimum (CBM), and valence band maximum (VBM) of 2176 types of 2D materials. Subsequently, we collected a comprehensive data set comprising 3539 types of 2D materials, each characterized by its HSE band gaps, CBM, and VBM. Considering the lattice disparities between MoSi2N4 (MSN) and 2D materials, our analysis predicted 766 potential MSN/2D heterostructures. These heterostructures are further categorized into four distinct types based on the relative positions of their CBM and VBM: Type I encompasses 230 variants, Type II comprises 244 configurations, Type III consists of 284 permutations, and 0 band gap comprises 8 types.
ISSN:1948-7185
1948-7185
DOI:10.1021/acs.jpclett.4c01013