Accelerated Gradient Approach For Deep Neural Network-Based Adaptive Control of Unknown Nonlinear Systems

Recent connections in the adaptive control literature to continuous-time analogs of Nesterov's accelerated gradient method have led to the development of new real-time adaptation laws based on accelerated gradient methods. However, previous results assume that the system's uncertainties ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2024-05, Vol.PP, p.1-15
Hauptverfasser: Le, Duc M., Patil, Omkar Sudhir, Nino, Cristian F., Dixon, Warren E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent connections in the adaptive control literature to continuous-time analogs of Nesterov's accelerated gradient method have led to the development of new real-time adaptation laws based on accelerated gradient methods. However, previous results assume that the system's uncertainties are linear-in-the-parameters (LIP). To compensate for non-LIP uncertainties, our preliminary results developed a neural network (NN)-based accelerated gradient adaptive controller to achieve trajectory tracking for nonlinear systems; however, the development and analysis only considered single-hidden-layer NNs. In this article, a generalized deep NN (DNN) architecture with an arbitrary number of hidden layers is considered, and a new DNN-based accelerated gradient adaptation scheme is developed to generate estimates of all the DNN weights in real-time. A nonsmooth Lyapunov-based analysis is used to guarantee the developed accelerated gradient-based DNN adaptation design achieves global asymptotic tracking error convergence for general nonlinear control affine systems subject to unknown (non-LIP) drift dynamics and exogenous disturbances. A comprehensive set of simulation studies are conducted on a two-state nonlinear system, a robotic manipulator, and a complex 20-D nonlinear system to demonstrate the improved performance of the developed method. Our simulation studies demonstrate enhanced tracking and function approximation performance from both DNN architectures and accelerated gradient adaptation.
ISSN:2162-237X
2162-2388
DOI:10.1109/TNNLS.2024.3395064