Likelihood-based inference under nonconvex boundary constraints

Likelihood-based inference under nonconvex constraints on model parameters has become increasingly common in biomedical research. In this paper, we establish large-sample properties of the maximum likelihood estimator when the true parameter value lies at the boundary of a nonconvex parameter space....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrika 2024-06, Vol.111 (2), p.591-607
Hauptverfasser: Wang, J Y, Ye, Z S, Chen, Y
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Likelihood-based inference under nonconvex constraints on model parameters has become increasingly common in biomedical research. In this paper, we establish large-sample properties of the maximum likelihood estimator when the true parameter value lies at the boundary of a nonconvex parameter space. We further derive the asymptotic distribution of the likelihood ratio test statistic under nonconvex constraints on model parameters. A general Monte Carlo procedure for generating the limiting distribution is provided. The theoretical results are demonstrated by five examples in Anderson's stereotype logistic regression model, genetic association studies, gene-environment interaction tests, cost-constrained linear regression and fairness-constrained linear regression.
ISSN:0006-3444
1464-3510
DOI:10.1093/biomet/asad062