Likelihood-based inference under nonconvex boundary constraints
Likelihood-based inference under nonconvex constraints on model parameters has become increasingly common in biomedical research. In this paper, we establish large-sample properties of the maximum likelihood estimator when the true parameter value lies at the boundary of a nonconvex parameter space....
Gespeichert in:
Veröffentlicht in: | Biometrika 2024-06, Vol.111 (2), p.591-607 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Likelihood-based inference under nonconvex constraints on model parameters has become increasingly common in biomedical research. In this paper, we establish large-sample properties of the maximum likelihood estimator when the true parameter value lies at the boundary of a nonconvex parameter space. We further derive the asymptotic distribution of the likelihood ratio test statistic under nonconvex constraints on model parameters. A general Monte Carlo procedure for generating the limiting distribution is provided. The theoretical results are demonstrated by five examples in Anderson's stereotype logistic regression model, genetic association studies, gene-environment interaction tests, cost-constrained linear regression and fairness-constrained linear regression. |
---|---|
ISSN: | 0006-3444 1464-3510 |
DOI: | 10.1093/biomet/asad062 |