Durable and Robust Antibacterial Polypropylene Hernia Mesh for Abdominal Wall Defect Repair

Polypropylene (PP) mesh is commonly used in repairing abdominal wall hernia (AWH). However, the use of synthetic prosthesis comes with the risk of developing a prosthetic infection, resulting in delayed healing, secondary surgery, and potentially increased mortality. To address these issues, a facil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-05, Vol.16 (20), p.25686-25697
Hauptverfasser: Ding, Rui, Yu, Luofeng, Peng, Pandi, Zhang, Jiajun, Xu, Haoqi, Li, Haoyu, Wu, Hanxue, Yan, Likun, Li, Peng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Polypropylene (PP) mesh is commonly used in repairing abdominal wall hernia (AWH). However, the use of synthetic prosthesis comes with the risk of developing a prosthetic infection, resulting in delayed healing, secondary surgery, and potentially increased mortality. To address these issues, a facile surface functionalization strategy for PP mesh based on phytic acid (PA) and polyhexamethylene guanidine (PHMG) was constructed through a one-step co-deposition process, referred to as the PA/PHMG coating. The development of PA/PHMG coating is mainly attributed to the surface affinity of PA and the electrostatic interactions between PA and PHMG. The PA/PHMG coating could be completed within 4 h under mild conditions. The prepared PA/PHMG coatings on PP mesh surfaces exhibited desirable biocompatibility toward mammalian cells and excellent antibacterial properties against the notorious “superbug” methicillin-resistant Staphylococcus aureus (MRSA) and tetracycline-resistant Escherichia coli (TRE). The PA/PHMG-coated PP meshes showed killing ratios of over 99% against MRSA in an infected abdominal wall hernia repair model. Furthermore, histological and immunohistochemical analysis revealed a significantly attenuated degree of neutrophil infiltration in the PA/PHMG coating group, attributed to the decreased bacterial numbers alleviating the inflammatory response at the implant sites. Meanwhile, the pristine PP and PA/PHMG-coated meshes showed effective tissue repair, with the PA/PHMG coating group exhibiting enhanced angiogenesis compared with pristine PP meshes, suggesting superior tissue restoration. Additionally, PP meshes with the highest PHMG weight ratio (PA/PHMG(3)) exhibited excellent long-term robustness under phosphate-buffered saline (PBS) immersion with a killing ratio against MRSA still exceeding 95% after 60 days of PBS immersion. The present work provides a facile and promising approach for developing antibacterial implants.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.4c02151