Footprints of atomic-scale features in plasmonic nanoparticles as revealed by electron energy loss spectroscopy

We present a first-principles theoretical study of the atomistic footprints in the valence electron energy loss spectroscopy (EELS) of nanometer-size metallic particles. Charge density maps of excited plasmons and EEL spectra for specific electron paths through a nanoparticle (Na 380 atom cluster) a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2024-05, Vol.26 (2), p.14991-154
Hauptverfasser: Urbieta, Mattin, Barbry, Marc, Koval, Peter, Rivacoba, Alberto, Sánchez-Portal, Daniel, Aizpurua, Javier, Zabala, Nerea
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a first-principles theoretical study of the atomistic footprints in the valence electron energy loss spectroscopy (EELS) of nanometer-size metallic particles. Charge density maps of excited plasmons and EEL spectra for specific electron paths through a nanoparticle (Na 380 atom cluster) are modeled using ab initio calculations within time-dependent density functional theory. Our findings unveil the atomic-scale sensitivity of EELS within this low-energy spectral range. Whereas localized surface plasmons (LSPs) are particularly sensitive to the atomistic structure of the surface probed by the electron beam, confined bulk plasmons (CBPs) reveal quantum size effects within the nanoparticle's volume. Moreover, we prove that classical local dielectric theories mimicking the atomistic structure of the nanoparticles reproduce the LSP trends observed in quantum calculations, but fall short in describing the CBP behavior observed under different electron trajectories. We present a first-principles theoretical study of the atomistic footprints in the valence electron energy loss spectroscopy (EELS) of nanometer-size metallic particles.
ISSN:1463-9076
1463-9084
DOI:10.1039/d4cp01034e