Comparison of the effects of Amomum tsaoko and its adulterants on functional dyspepsia rats based on metabolomics analysis

Amomum tsaoko (AT) is commonly used in clinical practice to treat abdominal distension and pain. It is also a seasoning for cooking, with the functions of appetizing, invigorating the spleen, and being digestive-promoting. Amomum tsaoko (AT) has three adulterants, Amomum paratsaoko (AP), Amomum koen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of pharmaceutical and biomedical analysis 2024-08, Vol.246, p.116208-116208, Article 116208
Hauptverfasser: Li, Zhaoju, Yang, Tianmei, Wang, Li, Liu, Xiaoli, Qu, Yuan, Xu, Zongliang, Zhang, Jinyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Amomum tsaoko (AT) is commonly used in clinical practice to treat abdominal distension and pain. It is also a seasoning for cooking, with the functions of appetizing, invigorating the spleen, and being digestive-promoting. Amomum tsaoko (AT) has three adulterants, Amomum paratsaoko (AP), Amomum koenigii (AK), and Alpinia katsumadai Hayata, because of the confusion in historical classics regarding recorded sources as well as the near geographic distribution and fruit morphological similarities. In this study, we established a functional dyspepsia (FD) rat model and then treated it with the corresponding medicinal solutions AT, AP, AK, and AKH. The gastric emptying rate, intestinal propulsion rate, serum biochemical indicators, histopathological changes, and fecal metabolism were measured. The efficacy and mechanism of AT, AP, AK, and AKH in the treatment of FD were compared. Fecal metabolomics revealed that 20 potential biomarkers were involved in seven significant metabolic pathways in FD rats. These pathways include ubiquinone and other terpenoid-quinone biosynthesis, glycerophospholipid metabolism, tyrosine metabolism, primary bile acid biosynthesis, purine metabolism, folate biosynthesis, and amino sugar and nucleotide sugar metabolism. AP regulates 6 metabolic pathways, 5 metabolic pathways affected by AT, 4 metabolic pathways affected by AK, and 2 metabolic pathways affected by AKH.The above results suggest that the different effects of AT, AP, AK, and AKH on FD rats may be due to their different regulatory effects on the metabolome. [Display omitted] •Comparison of the effects of Amomum tsaoko and its adulterants on FD.•Identification of potential biomarkers in FD rats using metabolomics techniques.•Explore the digestive promoting mechanism of sand Amomum tsaoko and its adulterants.
ISSN:0731-7085
1873-264X
DOI:10.1016/j.jpba.2024.116208