Polysaccharide- and protein-based edible films combined with microwave technology for meat preservation
To reduce food-borne bacterial infection caused by food spoilage, developing highly efficient food packing film is still an urgent need for food preservation. Herein, microwave-assisted antibacterial nanocomposite films CaO2@PVP/EA/CMC-Na (CP/EC) were synthesized using waste eggshell as precursor, e...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2024-06, Vol.270 (Pt 1), p.132233-132233, Article 132233 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To reduce food-borne bacterial infection caused by food spoilage, developing highly efficient food packing film is still an urgent need for food preservation. Herein, microwave-assisted antibacterial nanocomposite films CaO2@PVP/EA/CMC-Na (CP/EC) were synthesized using waste eggshell as precursor, egg albumen (EA) and sodium carboxymethylcellulose (CMCNa) as matrix by casting method. The size of CaO2@PVP (CP) nanoparticles with monodisperse spherical structures was 100–240 nm. When microwave and CP nanoparticles (0.05 mg/mL) were treated for 5 min, the mortality of E. coli and S. aureus could reach >97 %. Under microwave irradiation (6 min), the bactericidal rate of 2.5 % CP/EC film against E. coli and S. aureus reached 98.6 % and 97.2 %, respectively. After adding CP nanoparticles, the highest tensile strength (TS) and elongation at break (EB) of CP/EC film reached 19.59 MPa and 583.43 %, respectively. At 18 °C, the proliferation of bacterial colonies on meat can be significantly inhibited by 2.5 % CP/EC film. Detailed characterization showed that the excellent meat preservation activity was due to the synergistic effect of dynamic effect generated by ROS and thermal effect of microwave. This study provides a promising approach for the packaging application of polysaccharide- and protein-based biomass nanocomposite antibacterial edible films. |
---|---|
ISSN: | 0141-8130 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2024.132233 |