Constructing a Size-Controllable Spherical P2-Type Layered Oxides Cathode That Achieves Practicable Sodium-Ion Batteries
P2-type layered metal oxides are regarded as promising cathode materials for sodium-ion batteries due to their high voltage platform and rapid Na+ diffusion kinetics. However, limited capacity and unfavorable cycling stability resulting from inevitable phase transformation and detrimental structure...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2024-05, Vol.16 (20), p.26340-26347 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | P2-type layered metal oxides are regarded as promising cathode materials for sodium-ion batteries due to their high voltage platform and rapid Na+ diffusion kinetics. However, limited capacity and unfavorable cycling stability resulting from inevitable phase transformation and detrimental structure collapse hinder their future application. Herein, based on P2-type Na0.67Ni0.18Mn0.67Cu0.1Zn0.05O2, we synthesized a series of secondary spherical morphology cathodes with different radii derived from controlling precursors prepared by a coprecipitation method, which can be promoted to large-scale production. Consequently, the synthesized materials possessed a high tap density of 1.52 g cm–3 and a compacted density of 3.2 g cm–3. The half cells exhibited a specific capacity of 111.8 mAh g–1 at a current density of 0.1 C as well as an 82.64% capacity retention with a high initial capacity of 85.80 mAh g–1 after 1000 cycles under a rate of 5 C. Notably, in situ X-ray diffraction revealed a reversible P2–OP4 phase transition and displayed a tiny volume change of 6.96% during the charge/discharge process, indicating an outstanding cycling stability of the modified cathode. Commendably, the cylindrical cell achieved a capacity of 4.7 Ah with almost no change during 1000 cycles at 2 C, suggesting excellent potential for future applications. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.4c04855 |