Unraveling the influence of surface functionalities on gas Physisorption: A comprehensive study on SBA-15 nanoporous material from Monte Carlo simulation for improved Textural-Energetic characterization

[Display omitted] In this study, we conducted experimental and Monte Carlo simulation studies in the grand canonical ensemble (GCMC) to investigate the role of molecular orientation and surface heterogeneity on the adsorption of N2 at 77 K. Our research focused on a series of ordered nanoporous mate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2024-09, Vol.669, p.486-494
Hauptverfasser: Delgado Mons, Rodrigo, Villarroel-Rocha, Jhonny, Sapag, K., Llewellyn, Philip L., Rouquerol, Jean, Pablo Toso, Juan, Cornette, Valeria, López, Raúl H.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] In this study, we conducted experimental and Monte Carlo simulation studies in the grand canonical ensemble (GCMC) to investigate the role of molecular orientation and surface heterogeneity on the adsorption of N2 at 77 K. Our research focused on a series of ordered nanoporous materials (SBA-15) with varying degrees of oxygen functionalities. Specifically, we examined the effects of surface heterogeneity on the calculation of pore size distribution (PSD) and the Brunauer-Emmett-Teller (BET) area of porous materials. To provide a comprehensive perspective, we compared our results with three levels of surface oxidation, including a pristine case without any surface oxidation. The results from both our experimental and simulation data reveal the importance of chemical heterogeneity in determining equilibrium properties such as molecular packing within the pores, differential enthalpies of adsorption, and N2 orientation distribution. Our findings suggest that accurate characterization of surface heterogeneity is crucial for understanding gas adsorption in nanoporous materials and for developing better models for predicting their performance in various applications. Moreover, our simulations revealed substantial changes in the molecular orientation of adsorbate particles with increasing surface heterogeneity. This insight provides valuable information about the behavior of molecules within the nanoporous materials, further enhancing our understanding of the complex adsorption processes in these systems.
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2024.04.202