On the Fundamentals of Reverse Ring Rolling: A Numerical Proof of Concept

Ring Rolling is a near-net manufacturing process with some measurable dimensional inaccuracies in its products. This fact is exaggerated even more under the scope of high-precision manufacturing, where these imprecisions render such products unfitting for the strict dimensional requirements of high-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2024-05, Vol.17 (9), p.2055
Hauptverfasser: Pressas, Ioannis S, Papaefthymiou, Spyros, Manolakos, Dimitrios E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ring Rolling is a near-net manufacturing process with some measurable dimensional inaccuracies in its products. This fact is exaggerated even more under the scope of high-precision manufacturing, where these imprecisions render such products unfitting for the strict dimensional requirements of high-precision applications (e.g., bearings, casings for turbojets, etc.). In order to remedy some of the dimensional inaccuracies of Ring Rolling, the novel approach of Reverse Ring Rolling is proposed and investigated in the current analysis. The conducted research was based on a numerical simulation of a flat Ring Rolling process, previously presented by the authors. Since the final dimensions of the ring from the authors' previous work diverged from those initially expected, the simulation of a subsequent Reverse Ring Rolling process was performed to reach the target dimensions. The calculated deformational results revealed a great agreement in at least two of the three crucial dimensions. Additionally, the evaluation of the calculated stress, strain, temperature and load results revealed key aspects of the mechanisms that occur during the proposed process. Overall, it was concluded that Reverse Ring Rolling can effectively function as a corrective process, which can increase the dimensional accuracy of a seamless ring product with little additional post-processing and cost.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma17092055