Application of Deep Learning for Real-Time Ablation Zone Measurement in Ultrasound Imaging

The accurate delineation of ablation zones (AZs) is crucial for assessing radiofrequency ablation (RFA) therapy's efficacy. Manual measurement, the current standard, is subject to variability and potential inaccuracies. This study aims to assess the effectiveness of Artificial Intelligence (AI)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancers 2024-05, Vol.16 (9), p.1700
Hauptverfasser: Zimmermann, Corinna, Michelmann, Adrian, Daniel, Yannick, Enderle, Markus D, Salkic, Nermin, Linzenbold, Walter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The accurate delineation of ablation zones (AZs) is crucial for assessing radiofrequency ablation (RFA) therapy's efficacy. Manual measurement, the current standard, is subject to variability and potential inaccuracies. This study aims to assess the effectiveness of Artificial Intelligence (AI) in automating AZ measurements in ultrasound images and compare its accuracy with manual measurements in ultrasound images. An in vitro study was conducted using chicken breast and liver samples subjected to bipolar RFA. Ultrasound images were captured every 15 s, with the AI model Mask2Former trained for AZ segmentation. The measurements were compared across all methods, focusing on short-axis (SA) metrics. We performed 308 RFA procedures, generating 7275 ultrasound images across liver and chicken breast tissues. Manual and AI measurement comparisons for ablation zone diameters revealed no significant differences, with correlation coefficients exceeding 0.96 in both tissues ( < 0.001). Bland-Altman plots and a Deming regression analysis demonstrated a very close alignment between AI predictions and manual measurements, with the average difference between the two methods being -0.259 and -0.243 mm, for bovine liver and chicken breast tissue, respectively. The study validates the Mask2Former model as a promising tool for automating AZ measurement in RFA research, offering a significant step towards reducing manual measurement variability.
ISSN:2072-6694
2072-6694
DOI:10.3390/cancers16091700