Regional impact assessment of air quality improvement: The air quality lifecourse assessment tool (AQ-LAT) for the West Midlands combined authority (WMCA) area

Poor air quality is the largest environmental health risk in England. In the West Midlands, UK, ∼2.9 million people are affected by air pollution with an average loss in life expectancy of up to 6 months. The 2021 Environment Act established a legal framework for local authorities in England to deve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental pollution (1987) 2024-09, Vol.356, p.123871, Article 123871
Hauptverfasser: Hall, James, Zhong, Jian, Jowett, Sue, Mazzeo, Andrea, Thomas, G. Neil, Bryson, John R., Dewar, Steve, Inglis, Nadia, Wolstencroft, Mark, Muller, Catherine, Bloss, William James, Harrison, Roy M., Bartington, Suzanne E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Poor air quality is the largest environmental health risk in England. In the West Midlands, UK, ∼2.9 million people are affected by air pollution with an average loss in life expectancy of up to 6 months. The 2021 Environment Act established a legal framework for local authorities in England to develop regional air quality plans, generating a policy need for predictive environmental impact assessment tools. In this context, we developed a novel Air Quality Lifecourse Assessment Tool (AQ-LAT) to estimate electoral ward-level impacts of PM2.5 and NO2 exposure on outcomes of interest to local authorities, namely morbidity (asthma, coronary heart disease (CHD), stroke, lung cancer), mortality, and associated healthcare costs. We apply the Tool to assess the health economic burden of air pollutant exposure and estimate benefits that would be generated by meeting WHO 2021 Global Air Quality Guidelines (AQGs) (annual average concentrations) for NO2 (10 μg/m3) and PM2.5 (5 μg/m3) in the West Midlands Combined Authority Area. All West Midlands residents live in areas which exceed WHO AQGs, with 2070 deaths, 2070 asthma diagnoses, 770 CHD diagnoses, 170 lung cancers and 650 strokes attributable to air pollution exposure annually. Reducing PM2.5 and NO2 concentrations to WHO AQGs would save 10,700 lives reducing regional mortality by 1.8%, gaining 92,000 quality-adjusted life years (QALYs), and preventing 20,500 asthma, 7400 CHD, 1400 lung cancer, and 5700 stroke diagnoses, with economic benefits of £3.2 billion over 20 years. Significantly, we estimate 30% of QALY gains relate to reduced disease burden. The AQ-LAT has major potential to be replicated across local authorities in England and applied to inform regional investment decisions. [Display omitted] •Local government has an essential role in delivering air quality policy actions.•We developed an open-access health impact tool for regional policy appraisal.•We use the tool to estimate health impacts of NO2 and PM2.5 in West Midlands, UK.•All areas of the West Midlands exceed WHO Global Air Quality Guidelines.•Achieving WHO Guidelines would reduce regional mortality by up to 2%.
ISSN:0269-7491
1873-6424
1873-6424
DOI:10.1016/j.envpol.2024.123871