Spatiotemporal vortex strings
Light carrying orbital angular momentum (OAM) holds unique properties and boosts myriad applications in diverse fields. However, the generation of an ultrafast wave packet carrying numerous vortices with various transverse OAM modes, i.e., vortex string, remains challenging, and the corresponding de...
Gespeichert in:
Veröffentlicht in: | Science advances 2024-05, Vol.10 (19), p.eadn6206-eadn6206 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Light carrying orbital angular momentum (OAM) holds unique properties and boosts myriad applications in diverse fields. However, the generation of an ultrafast wave packet carrying numerous vortices with various transverse OAM modes, i.e., vortex string, remains challenging, and the corresponding detection method is lacking. Here, we demonstrate that a vortex string with 28 spatiotemporal optical vortices (STOVs) with customizable topological charge (TC) arrangements can be generated in one wave packet. The diffraction rules of STOV strings are revealed theoretically and experimentally. Following these rules, the TC values and positions of all STOVs in a vortex string can be simultaneously recognized from the diffraction pattern. Such STOV strings facilitate STOV-based optical communication. As a proof-of-principle demonstration, the transmission of an image is realized with 16-STOV strings. This work provides guidance for revealing the underlying properties of the transverse OAM light and opens up opportunities for applications of the structured light in optical communication, quantum information processing, etc. |
---|---|
ISSN: | 2375-2548 2375-2548 |
DOI: | 10.1126/sciadv.adn6206 |