Spin Rotations in a Bose-Einstein Condensate Driven by Counterflow and Spin-Independent Interactions
We observe spin rotations caused by atomic collisions in a nonequilibrium Bose-condensed gas of ^{87}Rb. Reflection from a pseudomagnetic barrier creates counterflow in which forward- and backward-propagating matter waves have partly transverse spin directions. Even though inter-atomic interaction s...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2024-04, Vol.132 (17), p.173401-173401, Article 173401 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We observe spin rotations caused by atomic collisions in a nonequilibrium Bose-condensed gas of ^{87}Rb. Reflection from a pseudomagnetic barrier creates counterflow in which forward- and backward-propagating matter waves have partly transverse spin directions. Even though inter-atomic interaction strengths are state independent, the indistinguishability of parallel spins leads to spin dynamics. A local magnetodynamic model, which captures the salient features of the observed spin textures, highlights an essential connection between four-wave mixing and collisional spin rotation. The observed phenomenon is commonly thought not to occur in Bose condensates; our observations and model clarify the nature of these effective-magnetic spin rotations. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.132.173401 |