High-Area-Capacity Cathode by Ultralong Carbon Nanotubes for Secondary Binder-Assisted Dry Coating Technology

Thick electrodes with high mass loading and increased content of active materials are critical for achieving higher energy density in contemporary lithium-ion batteries (LIBs). Nonetheless, producing thick electrodes through the commonly used slurry coating technology remains a formidable challenge....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-05, Vol.16 (20), p.26209-26216
Hauptverfasser: Wang, Jia, Shao, Di, Fan, Zengjie, Xu, Chong, Dou, Hui, Xu, Miao, Ding, Bing, Zhang, Xiaogang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Thick electrodes with high mass loading and increased content of active materials are critical for achieving higher energy density in contemporary lithium-ion batteries (LIBs). Nonetheless, producing thick electrodes through the commonly used slurry coating technology remains a formidable challenge. In this study, we have addressed this challenge by developing a dry electrode technology by using ultralong multiwalled carbon nanotubes (MWCNT) as a conductive additive and secondary binder. The mixing process of electrode compositions and the fibrillation process of the polytetrafluoroethylene (PTFE) binder were optimized. The resulting LiCoO2 (LCO) electrode exhibited a remarkable mass loading of 48 mg cm–2 and an active material content of 95 wt %. Notably, the thick LCO electrode demonstrated a superior mechanical strength and electrochemical performance. After 100 cycles at a current density of 1/3 C, the electrode still exhibited a capacity retention of 91% of its initial capacity. This dry electrode technology provides a practicable and scalable approach to the powder-to-film LIB electrode manufacturing process.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.4c02959