Laser‐Printed Photoanode: Femtosecond Laser‐Induced Crystalline Phase Transformation of WO3 Nanorods for Space‐Efficient and Flexible Thin‐Film Solar Water‐Splitting Cells
Despite its potential for clean hydrogen harvesting, photoelectrochemical (PEC) water‐splitting cells face challenges in commercialization, particularly related its harvesting performance and productivity at an industrial scale. Herein, a facile fabrication method of flexible thin‐film photoanode fo...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-09, Vol.20 (37), p.e2402051-n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Despite its potential for clean hydrogen harvesting, photoelectrochemical (PEC) water‐splitting cells face challenges in commercialization, particularly related its harvesting performance and productivity at an industrial scale. Herein, a facile fabrication method of flexible thin‐film photoanode for PEC water‐splitting to overcome these limitations, based on laser processing technologies, is proposed. Laser‐induced graphene, a carbon structure produced through direct laser writing carbonization (DLWC), plays a dual role: a flexible and stable current collector and a substrate for the hydrothermal synthesis of tungsten trioxide (WO3) nanorods (NRs). To facilitate water‐splitting, a femtosecond‐pulsed laser (fs laser) is focused on the WO3 NRs, converting their crystalline phase from pristine orthorhombic to monoclinic structure without thermal damage. With NiFe layered double hydroxide (LDH) catalyst, the flexible thin‐film photoanode exhibits good PEC performance (1.46 mA cm−2 at 1.23 VRHE) and retains ≈90% of its performance after 3000 bending cycles. With its excellent mechanical properties, the flexible photoanode can be operated in various shapes with different curvatures, enabling space‐efficient PEC water‐splitting by loading larger photoanode within a given space. This study is expected to contribute to the advancement of large‐scale solar water‐splitting cells, introducing a new approach to enhance H2/O2 production and expand its application range.
This manuscript introduces a facile laser‐based method for the fabrication of a flexible thin‐film photoanode for photoelectrochemical water splitting. With DLWC and fs‐LIPT process, the flexible thin‐film photoanode based on m‐WO3 NRs can be fabricated. The fabricated flexible photoanode exhibits good PEC performance and mechanical durability, achieving space‐efficient hydrogen harvesting, and reducing its volume in a limited space. |
---|---|
ISSN: | 1613-6810 1613-6829 1613-6829 |
DOI: | 10.1002/smll.202402051 |