Microstructural and Hydrophilic Properties of Polylactide Polymer Samples with Various 3D Printing Patterns

The aim of the work is to study the effect of the 3D printing process on the microstructural and hydrophilic properties of polylactic acid (PLA) samples with various model printing patterns obtained from the black filament PLA by sequentially applying polymer layers using the FDM (fused deposition m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2024-05, Vol.16 (9), p.1281
Hauptverfasser: Lenshin, Alexandr S, Frolova, Vera E, Kannykin, Sergey V, Domashevskaya, Evelina P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of the work is to study the effect of the 3D printing process on the microstructural and hydrophilic properties of polylactic acid (PLA) samples with various model printing patterns obtained from the black filament PLA by sequentially applying polymer layers using the FDM (fused deposition modeling) method. X-ray phase analysis revealed the partial crystallization of PLA polymer chains in the printed samples, which occurs under thermal and mechanical action on the original amorphous PLA filament during 3D printing to varying degrees, depending on the geometry of the pattern and the morphology of its surface. At the same time, IR spectroscopy data indicate the preservation of all intrastructural chemical bonds of polylactide. Measured at the original installation, the values of the wetting edge angles on the surface of the printed samples are in the range φ = 50-60°, which is significantly less than the right angle. This indicates the hydrophilic properties of the whole sample's surface. At the same time, the influence of different geometries of model drawings in printed samples was found not only on the morphology of the sample's surface according to SEM data but also on its wettability.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym16091281