Enzyme-Driven LC–HRMS Approach for Specific Recognition of 12α-Hydroxy Bile Acids
The synthesis of 12α-hydroxylated bile acids (12HBAs) and non-12α-hydroxylated bile acids (non-12HBAs) occurs via classical and alternative pathways, respectively. The composition of these BAs is a crucial index for pathophysiologic assessment. However, accurately differentiating 12HBAs and non-12HB...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2024-05, Vol.96 (21), p.8613-8621 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The synthesis of 12α-hydroxylated bile acids (12HBAs) and non-12α-hydroxylated bile acids (non-12HBAs) occurs via classical and alternative pathways, respectively. The composition of these BAs is a crucial index for pathophysiologic assessment. However, accurately differentiating 12HBAs and non-12HBAs is highly challenging due to the limited standard substances. Here, we innovatively introduce 12α-hydroxysteroid dehydrogenase (12α-HSDH) as an enzymatic probe synthesized by heterologous expression in Escherichia coli, which can specifically and efficiently convert 12HBAs in vitro under mild conditions. Coupled to the conversion rate determined by liquid chromatography-high resolution mass spectrometry (LC–HRMS), this enzymatic probe allows for the straightforward distinguishing of 210 12HBAs and 312 non-12HBAs from complex biological matrices, resulting in a BAs profile with a well-defined hydroxyl feature at the C12 site. Notably, this enzyme-driven LC-HRMS approach can be extended to any molecule with explicit knowledge of enzymatic transformation. We demonstrate the practicality of this BAs profile in terms of both revealing cross-species BAs heterogeneity and monitoring the alterations of 12HBAs and non-12HBAs under asthma disease. We envisage that this work will provide a novel pattern to recognize the shift of BA metabolism from classical to alternative synthesis pathways in different pathophysiological states, thereby offering valuable insights into the management of related diseases. |
---|---|
ISSN: | 0003-2700 1520-6882 1520-6882 |
DOI: | 10.1021/acs.analchem.4c00676 |