Smoking-induced CCNA2 expression promotes lung adenocarcinoma tumorigenesis by boosting AT2/AT2-like cell differentiation
Lung adenocarcinoma (LUAD), a type of non-small cell lung cancer (NSCLC), originates from not only bronchial epithelial cells but also alveolar type 2 (AT2) cells, which could differentiate into AT2-like cells. AT2-like cells function as cancer stem cells (CSCs) of LUAD tumorigenesis to give rise to...
Gespeichert in:
Veröffentlicht in: | Cancer letters 2024-06, Vol.592, p.216922, Article 216922 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Lung adenocarcinoma (LUAD), a type of non-small cell lung cancer (NSCLC), originates from not only bronchial epithelial cells but also alveolar type 2 (AT2) cells, which could differentiate into AT2-like cells. AT2-like cells function as cancer stem cells (CSCs) of LUAD tumorigenesis to give rise to adenocarcinoma. However, the mechanism underlying AT2 cell differentiation into AT2-like cells in LUAD remains unknown. We analyze genes differentially expressed and genes with significantly different survival curves in LUAD, and the combination of these two analyses yields 147 differential genes, in which 14 differentially expressed genes were enriched in cell cycle pathway. We next analyze the protein levels of these genes in LUAD and find that Cyclin-A2 (CCNA2) is closely associated with LUAD tumorigenesis. Unexpectedly, high CCNA2 expression in LUAD is restrictedly associated with smoking and independent of other driver mutations. Single-cell sequencing analyses reveal that CCNA2 is predominantly involved in AT2-like cell differentiation, while inhibition of CCNA2 significantly reverses smoking-induced AT2-like cell differentiation. Mechanistically, CCNA2 binding to CDK2 phosphorylates the AXIN1 complex, which in turn induces ubiquitination-dependent degradation of β-catenin and inhibits the WNT signaling pathway, thereby failing AT2 cell maintenance. These results uncover smoking-induced CCNA2 overexpression and subsequent WNT/β-catenin signaling inactivation as a hitherto uncharacterized mechanism controlling AT2 cell differentiation and LUAD tumorigenesis.
[Display omitted]
•CCNA2 is a biomarker of AT2 cell differentiation into AT2-like cells in lung adenocarcinoma.•Inhibition of CCNA2 alleviates smoking-induced AT2 cell differentiation.•CCNA2 induces AT2 cell differentiation via disrupting WNT/β-catenin signaling.•Combination of CCNA2 with CDK2 induces ubiquitination-dependent degradation of β-catenin. |
---|---|
ISSN: | 0304-3835 1872-7980 1872-7980 |
DOI: | 10.1016/j.canlet.2024.216922 |