Distribution, mobilization, risk assessment and source identification of heavy metals and nutrients in surface sediments of three urban-rural rivers after long-term water pollution treatment

Sediments are critical pollution carriers in urban-rural rivers, which can threaten the water quality of the river and downstream lakes for a long time. However, it is still not clear whether conventional water pollution treatments could abate sediment pollution or not. In this study, heavy metals (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2024-07, Vol.932, p.172894-172894, Article 172894
Hauptverfasser: Yao, Xu, Wang, Zheng, Li, Dandan, Sun, Hejia, Ren, Chong, Yu, Yilei, Pei, Feifei, Li, Yuling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sediments are critical pollution carriers in urban-rural rivers, which can threaten the water quality of the river and downstream lakes for a long time. However, it is still not clear whether conventional water pollution treatments could abate sediment pollution or not. In this study, heavy metals (HMs) and nutrient salts in the surface sediments and overlying water were investigated after decades' water pollution treatment in three urban-rural rivers. HM speciation was determined by the sequential extraction; diffusion fluxes were estimated using Fick's first law; HM ecological risk and nutrient pollution were evaluated; and pollution sources were identified by statistical analysis and GIS. The results showed that the HMs and nutrients were extremely serious in the urban regions. The accumulation level of Pb, Cu and Cd in the sediments of the three rivers were all much higher than the soil background value, and the labile fractions accounted for high proportions (57 % for Pb, 55 % for Cu and 43 % for Cd), which could be easily eluate from the sediments and caused hazards to the aquatic environment. The sediment diffusion fluxes of HMs and ammonia nitrogen were mostly positive, which indicated these sites currently released these pollutants from sediment to overlying water. Cd, Pb, Cu and Cr may mainly originate from industrial discharge and domestic sewage, while Cr was also greatly affected by crustal weathering; nutrient pollution may originate from agricultural activities and domestic sewage. Our study demonstrated that after decades' conventional water treatment in these rivers, the sediment pollution was still in a serious level with high ecological risk, and Cd was the dominant pollutant. At present, the external point source pollution has been effectively controlled, thus, the in-depth understanding of the sediment pollution characteristics after long-term water treatment could provide a scientific basis for the accurate elimination of river pollution. [Display omitted] •River sediments still severely polluted after decades' water pollution treatments.•The extractable fractions of Pb and Cd were high in the sediments.•Most sediments currently released HMs and NH4+-N to overlying water.•Cd was the dominant heavy metal pollutant with the highest ecological risk.•Anthropogenic pollution were the primary sources for the sediment pollution.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2024.172894